Skip to main content

Contrasting patterns of genetic and morphological diversity in the bumblebee Bombus lucorum (Hymenoptera: Apidae: Bombus) along a European gradient

Abstract

The Iberian Peninsula is known to have acted as a glacial refugium for many species during the Pleistocene in Europe. Several phylogeographical studies have been carried out within the genus Bombus which indicate a genetic differentiation of some of its species in the southern European peninsulas. Bombus lucorum (Linnaeus, 1761) is one of the three cryptic species belonging to the B. lucorum complex. In recent years, this complex has been widely studied; however, there is a lack of information about the genetic diversity of this species and its possible postglacial recolonization events. To overcome this knowledge gap, in this study several populations from the centre of the Iberian Peninsula to Belgium have been characterized using mitochondrial and nuclear markers (cox1 barcoding and 11 microsatellite loci) and the geometric morphometrics of the wings. Results from cox1 indicate a genetic differentiation of the population of Sierra de Guadarrama at the centre of the Iberian Peninsula, while microsatellite loci and geometric morphometrics analyses do not show any population structure. These results point to a past event of genetic differentiation of B. lucorum in the Iberian Peninsula although they also suggest a current gene flow with populations from mainland Europe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Archer FI, Adams PE, Schneiders BB (2017) Stratag: an R package for manipulating, summarizing and analysing population genetic data. Mol Ecol Resour 17:5–11

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Aytekin MA, Terzo M, Rasmont P, Çağatay N (2007) Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Ann Soc Entomol Fr 43:95–102

    Article  Google Scholar 

  3. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bertsch A (1997) Abgrenzung der Hummel-Arten Bombus cryptarum und B. lucorum mittels männlicher Labialdrüsen-Sekrete und morphologischer Merkmale (Hymenoptera, Apidae). Entomol Gen 22:129–145

    Article  Google Scholar 

  5. Bertsch A (2009) Barcoding cryptic bumblebee taxa: B. lucorum, B. crytarum and B. magnus, a case study. Beitr Entomol 59:287–310

    Google Scholar 

  6. Bertsch A, Schweer H, Titze A (2004) Discrimination of the bumblebee species Bombus lucorum, B. cryptarum and B. magnus by morphological characters and male labial gland secretions. Beitr Entomol 54:365–386

    Google Scholar 

  7. Bertsch A, Schweer H, Titze A, Tanaka H (2005) Male labial gland secretions and mitochondrial DNA markers support species status of Bombus cryptarum and B. magnus (Hymenoptera, Apidae). Insect Soc 52:45–54

    Article  Google Scholar 

  8. Boettcher PJ, Tixier-Boichard M, Toro MA, Simianer H, Eding H, Gandini G et al (2010) Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. An Genet 41:64–77

    Article  Google Scholar 

  9. Bossert S (2015) Recognition and identification of bumblebee species in the Bombus lucorum-complex (Hymenoptera, Apidae)—a review and outlook. Deut Entomol Z 62:19

    Article  Google Scholar 

  10. Bossert S, Gereben-Krenn BA, Neumayer J, Schneller B, Krenn HW (2016) The cryptic Bombus lucorum complex (Hymenoptera: Apidae) in Austria: phylogeny, distribution, habitat usage and a climatic characterization based on COI sequence data. Zool Stud 55:2016–2055

    Google Scholar 

  11. Boursot P, Bonhomme F (1986) Génétique et évolution du génome mitochondrial des Métazoaires. Genet Sel Evol 18:73–98

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Campbell NA, Atchley WR (1981) The geometry of canonical variate analysis. Syst Biol 30:268–280

    Article  Google Scholar 

  13. Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B et al (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS ONE 7:e29251

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Cejas D, Ornosa C, Muñoz I, De la Rúa P (2019) Preliminary report on cross-species microsatellite amplification for bumblebee biodiversity and conservation studies. Archivos de Zootecnia 68:422–426

    Google Scholar 

  15. Cooper SJB, Hewitt GM (1993) Nuclear DNA sequence divergence between parapatric subspecies of the grasshopper Chorthippus parallelus. Insect Mol Biol 2:185–194

    CAS  PubMed  Article  Google Scholar 

  16. Dehon M, Perrard A, Engel MS, Nel A, Michez D (2017) Antiquity of cleptoparasitism among bees revealed by morphometric and phylogenetic analysis of a Paleocene fossil nomadine (Hymenoptera: Apidae). Syst Entomol 42:543–554

    Article  Google Scholar 

  17. Dockx C (2007) Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba. Biol J Linn Soc 92:605–616

    Article  Google Scholar 

  18. Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Mol Phylogenet Evol 64:219–231

    PubMed  Article  Google Scholar 

  19. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  20. Estoup A, Scholl A, Pouvreau A, Solignac M (1995) Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by high variable microsatellites. Mol Ecol 4:89–93

    CAS  PubMed  Article  Google Scholar 

  21. Estoup A, Solignac M, Cornuet J, Goudet J, Scholl A (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol Ecol 5:19–31

    CAS  PubMed  Article  Google Scholar 

  22. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  23. Françoso E, Arias MC (2013) Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode. Mol Ecol Resour 13:844–850

    PubMed  Article  CAS  Google Scholar 

  24. Françoso E, de Oliveira FF, Arias MC (2016) An integrative approach identifies a new species of bumblebee (Hymenoptera: Apidae: Bombini) from northeastern Brazil. Apidologie 47:171–185

    Article  Google Scholar 

  25. Francoy TM, Grassi ML, Imperatriz-Fonseca VL, de Jesús May-Itzá W, Quezada-Euán JJG (2011) Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 42:499–507

    Article  Google Scholar 

  26. Gerard M, Michez D, Fournier D, Maebe K, Smagghe G, Biesmeijer JC et al (2015) Discrimination of haploid and diploid males of Bombus terrestris (Hymenoptera; Apidae) based on wing shape. Apidologie 46:644–653

    Article  Google Scholar 

  27. Gómez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds) Phylogeography of southern European refugia. Springer, Netherlands, Dordrecht, pp 155–188

    Chapter  Google Scholar 

  28. Habel JC, Schmitt T, Müller P (2005) The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: the phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J Biogeogr 32:1489–1497

    Article  Google Scholar 

  29. Ivanova NV, Dewaard JR, Hebert PD (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    CAS  Article  Google Scholar 

  30. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    PubMed  PubMed Central  Article  Google Scholar 

  32. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    PubMed  Article  PubMed Central  Google Scholar 

  33. Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4(8):782–788

    Article  Google Scholar 

  34. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    PubMed  Article  PubMed Central  Google Scholar 

  35. Kozmus P, Virant-Doberlet M, Meglič V, Dovč P (2011) Identification of Bombus species based on wing venation structure. Apidologie 42:472–480

    Article  Google Scholar 

  36. Lecocq T, Dellicour S, Michez D, Lhomme P, Vanderplanck M, Valterová I et al (2013a) Scent of a break-up: phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evol Biol 13:263

    PubMed  PubMed Central  Article  Google Scholar 

  37. Lecocq T, Vereecken NJ, Michez D, Dellicour S, Lhomme P, Valterova I et al (2013b) Patterns of genetic and reproductive traits differentiation in mainland vs. Corsican populations of bumblebees. PLoS ONE 8:e65642

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Lecocq T, Brasero N, Martinet B, Valterova I, Rasmont P (2015) Highly polytypic taxon complex: interspecific and intraspecific integrative taxonomic assessment of the widespread pollinator Bombus pascuorum Scopoli 1763 (Hymenoptera: Apidae). Syst Entomol 40:881–890

    Article  Google Scholar 

  39. Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  40. Lepais O, Darvill B, O’Connor S, Osborne JL, Sanderson RA, Cussans J et al (2010) Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol Ecol 19:819–831

    CAS  PubMed  Article  Google Scholar 

  41. Maebe K, Karise R, Meeus I, Mänd M, Smagghe G (2019) Pattern of population structuring between Belgian and Estonian bumblebees. Sci Rep 9(1):9651

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. McKendrick L, Provan J, Fitzpatrick Ú, Brown MJ, Murray TE, Stolle E et al (2017) Microsatellite analysis supports the existence of three cryptic species within the bumble bee Bombus lucorum sensu lato. Conserv Genet 183:573–584

    Article  Google Scholar 

  43. Mikkola K (1984) Spring migrations of wasp and bumblebee queens across the Gulf of Finland (Hymenoptera: Vespidae and Apidae). Not Entomol 64:125–128

    Google Scholar 

  44. Moreira AS, Horgan FG, Murray TE, Kakouli-Duarte T (2015) Population genetic structure of Bombus terrestris in Europe: isolation and genetic differentiation of Irish and British populations. Mol Ecol 24:3257–3268

    PubMed  Article  PubMed Central  Google Scholar 

  45. Murray TE, Fitzpatrick Ú, Brown MJ, Paxton RJ (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs. Conserv Genet 9:653–666

    CAS  Article  Google Scholar 

  46. Ornosa C, Ortiz-Sánchez FJ (2004) Hymenoptera: Apoidea I. CSIC Press, Madrid

    Google Scholar 

  47. Penado A, Rebelo H, Goulson D (2016) Spatial distribution modelling reveals climatically suitable areas for bumblebees in undersampled parts of the Iberian Peninsula. Insect Conserv Diver 9(5):391–401

    Article  Google Scholar 

  48. Potapov GS, Kondakov AV, Kolosova YS, Tomilova AA, Filippov BY, Gofarov MY et al (2018) Widespread continental mtDNA lineages prevail in the bumblebee fauna of Iceland. ZooKeys 774:141

    Article  Google Scholar 

  49. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    PubMed  Article  PubMed Central  Google Scholar 

  50. Powney GD, Carvell C, Edwards M, Morris RK, Roy HE, Woodcock BA, Isaac NJ (2019) Widespread losses of pollinating insects in Britain. Nat Commun 10:1018

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Queller DC, Strassmann JE, Hughes CR (1993) Microsatellites and kinship. Trends Ecol Evol 8:285–288

    CAS  PubMed  Article  Google Scholar 

  53. Rasmont P (1984) Les bourdons du genre Bombus Latreille sensu stricto en Europe Occidentale et Centrale (Hymenoptera, Apidae). Spixiana 7:135–160

    Google Scholar 

  54. Rasmont P, Franzén M, Lecocq T, Harpke A, Roberts SP, Biesmeijer JC et al (2015) Climatic risk and distribution atlas of European bumblebees. BioRisk 10:1–236

    Article  Google Scholar 

  55. Rohlf FJ (2016) tpsDig2 ver 2.32. Department of Ecology & Evolution, State University of New York, Stony Brook

    Google Scholar 

  56. Rohlf FJ (2017a) tpsSmall ver 1.34. Department of Ecology & Evolution, State University of New York, Stony Brook

    Google Scholar 

  57. Rohlf FJ (2017b) tpsUtil ver 1.74. Department of Ecology & Evolution, State University of New York, Stony Brook

    Google Scholar 

  58. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    PubMed  Article  Google Scholar 

  59. Sánchez-Bayo F, Wyckhuys KA (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  60. Schachter-Broide J, Dujardin JP, Kitron U, Gürtler RE (2004) Spatial structuring of Triatoma infestans (Hemiptera, Reduviidae) populations from northwestern Argentina using wing geometric morphometry. J Med Entomol 41:643–649

    PubMed  PubMed Central  Article  Google Scholar 

  61. Schmitt T, Seitz A (2004) Low diversity but high differentiation: the population genetics of Aglaope infausta (Zygaenidae: Lepidoptera). J Biogeogr 31:137–144

    Article  Google Scholar 

  62. Schutze MK, Jessup A, Clarke AR (2012) Wing shape as a potential discriminator of morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: Tephritidae). Bull Entomol Res 102:103–111

    CAS  PubMed  Article  Google Scholar 

  63. Scriven JJ, Woodall LC, Tinsley MC, Knight ME, Williams PH, Carolan JC et al (2015) Revealing the hidden niches of cryptic bumblebees in Great Britain: implications for conservation. Biol Conserv 182:126–133

    Article  Google Scholar 

  64. Smouse RPP, Peakall R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Tofilski A (2008) Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie 39:558–563

    Article  Google Scholar 

  66. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  67. Vesterlund SR, Sorvari J, Vasemägi A (2014) Molecular identification of cryptic bumblebee species from degraded samples using PCR–RFLP approach. Mol Ecol Resour 14:122–126

    CAS  PubMed  Article  Google Scholar 

  68. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Waters J, Darvill B, Lye GC, Goulson D (2011) Niche differentiation of a cryptic bumblebee complex in the Western Isles of Scotland. Insect Conserv Diver 4:46–52

    Article  Google Scholar 

  70. Widmer A, Schmid-Hempel P (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Mol Ecol 8:387–398

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. Widmer A, Schmid-Hempel P, Estoup A, Scholl A (1998) Population genetic structure and colonization history of Bombus terrestris sl (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity 81:563–572

    Article  Google Scholar 

  72. Williams PH, Brown MJF, Carolan JC, An J, Goulson D, Aytekin AM et al (2012) Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst Biodivers 10:21–56

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the projects E-RTA2014-00003-C03 (Spanish National Institute for Agricultural and Food Research and Technology, and European Regional Development Fund), AGL2015-64825-R (MINECO, Spanish Ministry of Economy and Competitivity) and 19908/GERM/2015 of Regional Excellence (Seneca Foundation, CARM). Sampling permissions were obtained from the corresponding authorities (Parques Nacionales de Ordesa, Aigüestortes y Monte Perdido y Sierra de Guadarrama). N. B-L is supported by the grant FPU14/05189. The authors wish to thank Ana Isabel Asensio for her technical support, Dr. Carlos Ruiz for comments on an earlier version, Jonathan M. Smith for English edition and two anonymous reviewers for their comments that clearly improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pilar De la Rúa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1350 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blasco-Lavilla, N., Ornosa, C., Michez, D. et al. Contrasting patterns of genetic and morphological diversity in the bumblebee Bombus lucorum (Hymenoptera: Apidae: Bombus) along a European gradient. J Insect Conserv 23, 933–943 (2019). https://doi.org/10.1007/s10841-019-00178-2

Download citation

Keywords

  • Bombus lucorum
  • Gene flow
  • Genetic differentiation
  • Population structure
  • Glacial refugium
  • Iberian Peninsula