Habitat quality determines patch occupancy of two specialist Lepidoptera species in well-connected grasslands

Abstract

Over the past 150 years, semi-natural grasslands have suffered from either large-scale intensification of land use or abandonment. Lepidoptera are excellent model organisms to study the effects of land-use changes. In this study, we analysed the effects of landscape quality and habitat quality on the patch occupancy of two specialist Lepidoptera species, the butterfly Erebia medusa and the burnet moth Adscita statices, in small but well-connected semi-natural grasslands (N = 71) in central Germany. Our study revealed that habitat quality was the main driver of patch occupancy of the two species. The generalized linear model analysis revealed that the occurrence of both species was determined by the litter volume. Additionally, for A. statices the cover of the host plants (Rumex acetosella and R. acetosa) was a further predictor. In contrast, landscape quality had only a minor role on patch occupancy. For both species, the observed population structure resembled a classical metapopulation of the Levins type consisting of many small and highly connected patches. In the short and medium term, abandonment was beneficial for both species, as it maintained the litter layer. In the long run it would lead to vegetation dominated by competitive, high-growing grasses (e.g., Arrhenatherum elatius) and a decreasing cover of the less competitive host plants, especially Festuca ovina agg. and R. acetosella. Hence, we would recommend rotational grazing or mowing, if sufficiently large parts of the habitats were not under management every year.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64(4):233–247. https://doi.org/10.1016/S0169-2046(02)00242-6

    Article  Google Scholar 

  2. Balmer O, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for central European butterfly communities: rethinking conservation practices. Conserv Biol 14(3):746–757. https://doi.org/10.1046/j.1523-1739.2000.98612.x

    Article  Google Scholar 

  3. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57. https://doi.org/10.1038/nature09678

    CAS  Article  PubMed  Google Scholar 

  4. Barton K (2018) Package MuMIn. https://www.r-project.org

  5. Bauerfeind SS, Theisen A, Fischer K (2009) Patch occupancy in the endangered butterfly Lycaena helle in a fragmented landscape: effects of habitat quality, patch size and isolation. J Insect Conserv 13(3):271–277. https://doi.org/10.1007/s10841-008-9166-1

    Article  Google Scholar 

  6. Baur B, Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A, Stoll P, Erhardt A (2006) Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol Conserv 132(2):261–273. https://doi.org/10.1016/j.biocon.2006.04.018

    Article  Google Scholar 

  7. Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths: the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126(2):247–259. https://doi.org/10.1016/j.biocon.2005.05.009

    Article  Google Scholar 

  8. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47(4):799–809. https://doi.org/10.1111/j.1365-2664.2010.01828.x

    Article  Google Scholar 

  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York

    Google Scholar 

  10. Butchart SHM, Walpole M, Collen B, Van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernández-Morcillo M, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. https://doi.org/10.1126/science.1187512

    CAS  Article  PubMed  Google Scholar 

  11. Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landsc Ecol 18(6):561–573. https://doi.org/10.1023/A:1026062530600

    Article  Google Scholar 

  12. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  13. Cousins SAO (2001) Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs. Landsc Ecol 16(1):41–54. https://doi.org/10.1023/A:1008108704358

    Article  Google Scholar 

  14. Crone EE, Schultz CB (2003) Movement behavior and minimum patch size for butterfly population persistence. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. University of Chicago Press, Chicago, pp 561–576

    Google Scholar 

  15. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2014) Estimating the normal background rate of species extinction. Conserv Biol 29(2):452–462. https://doi.org/10.1111/cobi.12380

    Article  PubMed  Google Scholar 

  16. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Muller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1(3):167–176. https://doi.org/10.1023/A:1018455714879

    Article  Google Scholar 

  17. Dolek M (2000) Der Einsatz der Beweidung in der Landschaftspflege: Untersuchungen an Tagfaltern als Zielgruppe. In: Bayer Akad für Naturschutz und Landschaftspflege (ANL) (ed) Bukolien—Weidelandschaft als Natur- und Kulturerbe: Bewahrung und Entwicklung. Laufener Seminarbeitr 4/2000, Laufen/Salzach, pp 63–77

  18. Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13(1):3–27. https://doi.org/10.1007/s10841-008-9135-8

    Article  Google Scholar 

  19. Dupré C, Stevens CJ, Ranke T, Bleekers A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Change Biol 16(1):344–357. https://doi.org/10.1111/j.1365-2486.2009.01982.x

    Article  Google Scholar 

  20. Ebert G (1994) Die Schmetterlinge Baden-Württembergs. Band 3: Nachtfalter I. Eugen Ulmer, Stuttgart

    Google Scholar 

  21. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Bd. 2. Tagfalter II. Eugen Ulmer, Stuttgart

    Google Scholar 

  22. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12(6):677–688. https://doi.org/10.1007/s10841-007-9110-9

    Article  Google Scholar 

  23. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Eugen Ulmer, Stuttgart

    Google Scholar 

  24. Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Biozönologie von Tagfaltern und Widderchen in einer alten Hudelandschaft. Abh Westf Mus Nat 66:1–256

    Google Scholar 

  25. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43:335–347

    Google Scholar 

  26. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa: von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westf Mus Naturkunde 68:11–57

  27. Fartmann T, Müller C, Poniatowski D (2013) Effects of coppicing on butterfly communities of woodlands. Biol Conserv 159:396–404. https://doi.org/10.1016/j.biocon.2012.11.024

    Article  Google Scholar 

  28. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. https://doi.org/10.1017/S0376892997000088

    Article  Google Scholar 

  29. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574. https://doi.org/10.1126/science.1111772

    CAS  Article  PubMed  Google Scholar 

  30. Franzén M, Nilsson SG (2008) How can we preserve and restore species richness of pollinating insects on agricultural land? Ecography 31(6):698–708. https://doi.org/10.1111/j.1600-0587.2008.05110.x

    Article  Google Scholar 

  31. Franzén M, Ranius T (2004) Habitat associations and occupancy patterns of burnet moths (Zygaenidae) in semi-natural pastures in Sweden. Entomol Fennica 15(2):91–101

    Article  Google Scholar 

  32. Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217(1–2):48–58. https://doi.org/10.1016/j.ecolmodel.2008.05.015

    Article  Google Scholar 

  33. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of Butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42

    Google Scholar 

  34. Goffart P, Schtickzelle N, Turlure C (2010) Conservation and management of the habitats of two relict butterflies in the Belgian Ardenne: Proclossiana eunomia and Lycaena helle. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Heidelberg, pp 357–370

    Google Scholar 

  35. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology, 2 edn. Castlepoint Press, Dalbeattie

    Google Scholar 

  36. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. https://doi.org/10.1111/j.1420-9101.2010.02210.x

    CAS  Article  PubMed  Google Scholar 

  37. Gutiérrez D, León-Cortés JL, Menéndez R, Wilson RJ, Cowley MJR, Thomas CD (2001) Metapopulations of four lepidopteran herbivores on a single host plant, Lotus corniculatus. Ecology 82(5):1371–1386. https://doi.org/10.1890/0012-9658(2001)082%5B1371:MOFLHO%5D2.0.CO;2

    Article  Google Scholar 

  38. Hanski I (1999) Metapopulation Ecology. Oxford University Press, Oxford

    Google Scholar 

  39. Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75(3):747–762. https://doi.org/10.2307/1941732

    Article  Google Scholar 

  40. Heikkinen RK, Luoto M, Kuussaari M, Pöyry J (2005) New insights into butterfly–environment relationships using partitioning methods. Proc R Soc B Biol Sci 272(1577):2203–2210. https://doi.org/10.1098/rspb.2005.3212

    Article  Google Scholar 

  41. Helbing F, Blaeser TP, Löffler F, Fartmann T (2014) Response of Orthoptera communities to succession in alluvial pine woodlands. J Insect Conserv 18(2):215–224. https://doi.org/10.1007/s10841-014-9632-x

    Article  Google Scholar 

  42. Helbing F, Fartmann T, Löffler F, Poniatowski D (2017) Effects of local climate, landscape structure and habitat quality on leafhopper assemblages of acidic grasslands. Agric Ecosyst Environ 246:94–101. https://doi.org/10.1016/j.agee.2017.05.024

    Article  Google Scholar 

  43. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8(1):23–29. https://doi.org/10.1111/j.1461-0248.2004.00686.x

    Article  Google Scholar 

  44. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Google Scholar 

  45. Kalogirou S (2017) Package lctools. https://www.r-project.org

  46. Konvička M, Benes J, Polakova S (2016) Smaller fields support more butterflies: comparing two neighbouring European countries with different socioeconomic heritage. J Insect Conserv 20(6):1113–1118. https://doi.org/10.1007/s10841-016-9940-4

    Article  Google Scholar 

  47. Krämer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261. https://doi.org/10.1016/j.biocon.2012.03.038

    Article  Google Scholar 

  48. Löffler F, Fartmann T (2017) Effects of landscape and habitat quality on Orthoptera assemblages of pre-alpine calcareous grasslands. Agric Ecosyst Environ 248:71–81. https://doi.org/10.1016/j.agee.2017.07.029

    Article  Google Scholar 

  49. Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106(2):259–271. https://doi.org/10.1016/S0006-3207(01)00252-X

    Article  Google Scholar 

  50. Menard S (2000) Coefficients of determination for multiple logistic regression analysis. Am Stat 54(1):17–24. https://doi.org/10.2307/2685605

    Article  Google Scholar 

  51. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145. https://doi.org/10.1890/0012-9658(2002)083%5B1131:SCMISE%5D2.0.CO;2

    Article  Google Scholar 

  52. Müller-Wille W (1981) Westfalen. Landschaftliche Ordnung und Bindung eines Landes, 2nd edn. Aschendorfsche Verlagsbuchhandlung, Münster

    Google Scholar 

  53. Naumann CM, Tarmann GM, Tremewan WG (1999) The western Palaearctic Zygaenidae (Lepidoptera). Apollo Books, Stenstrup

    Google Scholar 

  54. Nieminen M, Siljander M, Hanski I (2004) Structure and dynamics of Melitaea cinxia metapopulations. In: Ehrlich PR, Hanski I (eds) On the wings of checkerspots: a model system for population biology. Oxford University Press, Oxford, pp 63–91

    Google Scholar 

  55. Nilsson SG, Franzén M, Pettersson LB (2013) Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden. Nat Conserv 6:31–48. https://doi.org/10.3897/natureconservation.6.5205

    Article  Google Scholar 

  56. Öckinger E (2006) Possible metapopulation structure of the threatened butterfly Pyrgus armoricanus in Sweden. J Insect Conserv 10(1):43–51. https://doi.org/10.1007/s10841-005-1249-7

    Article  Google Scholar 

  57. Öckinger E, Lindborg R, Sjödin NE, Bommarco R (2012) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 35(3):259–267. https://doi.org/10.1111/j.1600-0587.2011.06870.x

    Article  Google Scholar 

  58. Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Conserv 14(6):637–645. https://doi.org/10.1007/s10841-010-9293-3

    Article  Google Scholar 

  59. Poniatowski D, Löffler F, Stuhldreher G, Borchard F, Krämer B, Fartmann T (2016) Functional connectivity as an indicator for patch occupancy in grassland specialists. Ecol Indic 67:735–742. https://doi.org/10.1016/j.ecolind.2016.03.047

    Article  Google Scholar 

  60. Poniatowski D, Stuhldreher G, Löffler F, Fartmann T (2018) Patch occupancy of grassland specialists: habitat quality matters more than habitat connectivity. Biol Conserv 225:237–244. https://doi.org/10.1016/j.biocon.2018.07.018

    Article  Google Scholar 

  61. Poschlod P (2015) Geschichte der Kulturlandschaft: Entstehungsursachen und Steuerungsfaktoren der Entwicklung der Kulturlandschaft, Lebensraum- und Artenvielfalt in Mitteleuropa. Eugen Ulmer, Stuttgart

    Google Scholar 

  62. Pöyry J, Lindgren S, Salminen J, Kuussaari M (2005) Responses of butterfly and moth species to restored cattle grazing in semi-natural grasslands. Biol Conserv 122(3):465–478. https://doi.org/10.1016/j.biocon.2004.09.007

    Article  Google Scholar 

  63. Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge

    Google Scholar 

  64. R Development Core Team (2017) R: a language and environment for statistical computing. https://cran.r-project.org. Accessed 26 September 2017

  65. Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands, 4th ed. In: Bundesamt für Naturschutz (ed) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 3: Wirbellose Tiere (Teil 1). Naturschutz Biol Vielfalt 70:167–194

  66. Rennwald E, Sobczyk T, Hofmann A (2011) Rote Liste und Gesamtartenliste der Spinnerartigen Falter (Lepidoptera: Bombyces, Sphinges s.l.) Deutschlands, 4th ed. In: Bundesamt für Naturschutz (ed) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 3: Wirbellose Tiere (Teil 1). Naturschutz Biol Vielfalt 70:243–283

  67. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M, Sieger S (2018) Package pROC. https://www.r-project.org

  68. Roem WJ, Berendse F (2000) Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92(2):151–161. https://doi.org/10.1016/S0006-3207(99)00049-X

    Article  Google Scholar 

  69. Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14(9):361–366. https://doi.org/10.1016/S0169-5347(99)01664-X

    CAS  Article  PubMed  Google Scholar 

  70. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber–Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity: global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    CAS  Article  PubMed  Google Scholar 

  71. Salz A, Fartmann T (2009) Coastal dunes as important strongholds for the survival of the rare Niobe fritillary (Argynnis niobe). J Insect Conserv 13(6):643–654. https://doi.org/10.1007/s10841-009-9214-5

    Article  Google Scholar 

  72. Schirmel J, Fartmann T (2014) Coastal heathland succession influences butterfly community composition and threatens endangered butterfly species. J Insect Conserv 18(1):111–120. https://doi.org/10.1007/s10841-014-9619-7

    Article  Google Scholar 

  73. Schmitt T (1993) Biotopansprüche von Erebia medusa brigobanna Fruhstorfer, 1917 (Rundaugen-Mohrenfalter) im Nordsaarland. Atalanta 24(1/2):33–56

    Google Scholar 

  74. Schmitt T, Varga Z, Seitz A (2000) Forests as dispersal barriers for Erebia medusa (Nymphalidae, Lepidoptera). Basic Appl Ecol 1(1):53–59. https://doi.org/10.1078/1439-1791-00008

    Article  Google Scholar 

  75. Schraml E, Fartmann T (2013) Frühlings-Mohrenfalter Erebia medusa ([Denis & Schiffermüller], 1775). In: Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 504–506

    Google Scholar 

  76. Slamova I, Klecka J, Konvička M (2013) Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv Divers 6(3):243–254. https://doi.org/10.1111/j.1752-4598.2012.00212.x

    Article  Google Scholar 

  77. Sonderegger P (2005) Die Erebien der Schweiz. Peter Sonderegger, Brügg bei Biel

    Google Scholar 

  78. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63(4):337–365. https://doi.org/10.1006/jema.2001.0473

    CAS  Article  Google Scholar 

  79. Streitberger M, Fartmann T (2015) Vegetation and climate determine ant-mound occupancy by a declining herbivorous insect in grasslands. Acta Oecol 68:43–49. https://doi.org/10.1016/j.actao.2015.07.004

    Article  Google Scholar 

  80. Stuhldreher G, Fartmann T (2014a) When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly. J Insect Conserv 18(5):965–979. https://doi.org/10.1007/s10841-014-9704-y

    Article  Google Scholar 

  81. Stuhldreher G, Fartmann T (2014b) Cold-adapted species in a warming world – an explorative study on the impact of high winter temperatures on a continental butterfly. Entomol Exp Appl 151(3):270–279. https://doi.org/10.1111/eea.12193

    Article  Google Scholar 

  82. Stuhldreher G, Fartmann T (2015) Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur J Entomol 112(3):493–499. https://doi.org/10.14411/eje.2015.067

    Article  Google Scholar 

  83. Van Swaay CAM, Warren M (1999) Red data book of European butterflies (Rhopalocera). Nature and environment, no. 99. Council of Europe Publishing, Strasbourg, pp 1–260

    Google Scholar 

  84. Van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10(2):189–209. https://doi.org/10.1007/s10841-006-6293-4

    Article  Google Scholar 

  85. Van Swaay CAM, Maes D, Warren MS (2009) Conservation Status of European butterflies. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 322–338

    Google Scholar 

  86. Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) (2009) Grasslands in Europe of high nature value. KNNV Publishing, Zeist

    Google Scholar 

  87. Villalba S, Gulinck H, Verbeylen G, Matthysen E (1998) Relationschip between patch connectivity and the occurence of the European red squirrel, Sciurus vulgaris, in forest fragments within heterogeneous landscapes. In: Dover JW, Bunce RGH (eds) Key concepts in landscape ecology. IALE UK, Preston, pp 205–220

    Google Scholar 

  88. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75(7):1861–1876. https://doi.org/10.2307/1941591

    Article  Google Scholar 

  89. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human Domination of earth’s ecosystems. Science 277:494–499. https://doi.org/10.1126/science.277.5325.494

    CAS  Article  Google Scholar 

  90. Waring P (2001) Grazing and cutting as conservation management tools: the need for a cautious approach, with some examples of rare moths which have been adversely affected. Entomol Rec J Var 113(5):193–200

    Google Scholar 

  91. Wickmann PO (2009) Thermoregulation and habitat use in butterflies. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 55–61

    Google Scholar 

Download references

Acknowledgements

We thank Gregor Stuhldreher for giving useful advice in statistics. We are very grateful to Felix Maximilian Freienstein for support during field work. Moreover, we like to thank two anonymous reviewers for valuable comments on an earlier version of the manuscript.

Funding

The study was funded by the Deutsche Bundesstiftung Umwelt (DBU; German Federal Environmental Foundation; Az.: 30350-33/2, Biotopverbund als Klimaanpassungs-Strategie des Naturschutzes in der Beispielregion Naturpark Diemelsee).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thorsten Münsch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals

No butterflies or burnet moths were harmed during the course of this project.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Münsch, T., Helbing, F. & Fartmann, T. Habitat quality determines patch occupancy of two specialist Lepidoptera species in well-connected grasslands. J Insect Conserv 23, 247–258 (2019). https://doi.org/10.1007/s10841-018-0109-1

Download citation

Keywords

  • Adscita statices
  • Erebia medusa
  • Functional connectivity
  • Habitat fragmentation
  • Landscape composition
  • Vegetation structure