Habitat quality determines patch occupancy of two specialist Lepidoptera species in well-connected grasslands

  • Thorsten MünschEmail author
  • Felix Helbing
  • Thomas Fartmann


Over the past 150 years, semi-natural grasslands have suffered from either large-scale intensification of land use or abandonment. Lepidoptera are excellent model organisms to study the effects of land-use changes. In this study, we analysed the effects of landscape quality and habitat quality on the patch occupancy of two specialist Lepidoptera species, the butterfly Erebia medusa and the burnet moth Adscita statices, in small but well-connected semi-natural grasslands (N = 71) in central Germany. Our study revealed that habitat quality was the main driver of patch occupancy of the two species. The generalized linear model analysis revealed that the occurrence of both species was determined by the litter volume. Additionally, for A. statices the cover of the host plants (Rumex acetosella and R. acetosa) was a further predictor. In contrast, landscape quality had only a minor role on patch occupancy. For both species, the observed population structure resembled a classical metapopulation of the Levins type consisting of many small and highly connected patches. In the short and medium term, abandonment was beneficial for both species, as it maintained the litter layer. In the long run it would lead to vegetation dominated by competitive, high-growing grasses (e.g., Arrhenatherum elatius) and a decreasing cover of the less competitive host plants, especially Festuca ovina agg. and R. acetosella. Hence, we would recommend rotational grazing or mowing, if sufficiently large parts of the habitats were not under management every year.


Adscita statices Erebia medusa Functional connectivity Habitat fragmentation Landscape composition Vegetation structure 



We thank Gregor Stuhldreher for giving useful advice in statistics. We are very grateful to Felix Maximilian Freienstein for support during field work. Moreover, we like to thank two anonymous reviewers for valuable comments on an earlier version of the manuscript.


The study was funded by the Deutsche Bundesstiftung Umwelt (DBU; German Federal Environmental Foundation; Az.: 30350-33/2, Biotopverbund als Klimaanpassungs-Strategie des Naturschutzes in der Beispielregion Naturpark Diemelsee).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals

No butterflies or burnet moths were harmed during the course of this project.


  1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64(4):233–247. CrossRefGoogle Scholar
  2. Balmer O, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for central European butterfly communities: rethinking conservation practices. Conserv Biol 14(3):746–757. CrossRefGoogle Scholar
  3. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57. CrossRefPubMedGoogle Scholar
  4. Barton K (2018) Package MuMIn.
  5. Bauerfeind SS, Theisen A, Fischer K (2009) Patch occupancy in the endangered butterfly Lycaena helle in a fragmented landscape: effects of habitat quality, patch size and isolation. J Insect Conserv 13(3):271–277. CrossRefGoogle Scholar
  6. Baur B, Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A, Stoll P, Erhardt A (2006) Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol Conserv 132(2):261–273. CrossRefGoogle Scholar
  7. Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths: the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126(2):247–259. CrossRefGoogle Scholar
  8. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47(4):799–809. CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Butchart SHM, Walpole M, Collen B, Van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque J-F, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Hernández-Morcillo M, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. CrossRefPubMedGoogle Scholar
  11. Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landsc Ecol 18(6):561–573. CrossRefGoogle Scholar
  12. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46. CrossRefGoogle Scholar
  13. Cousins SAO (2001) Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs. Landsc Ecol 16(1):41–54. CrossRefGoogle Scholar
  14. Crone EE, Schultz CB (2003) Movement behavior and minimum patch size for butterfly population persistence. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. University of Chicago Press, Chicago, pp 561–576Google Scholar
  15. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2014) Estimating the normal background rate of species extinction. Conserv Biol 29(2):452–462. CrossRefPubMedGoogle Scholar
  16. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Muller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1(3):167–176. CrossRefGoogle Scholar
  17. Dolek M (2000) Der Einsatz der Beweidung in der Landschaftspflege: Untersuchungen an Tagfaltern als Zielgruppe. In: Bayer Akad für Naturschutz und Landschaftspflege (ANL) (ed) Bukolien—Weidelandschaft als Natur- und Kulturerbe: Bewahrung und Entwicklung. Laufener Seminarbeitr 4/2000, Laufen/Salzach, pp 63–77Google Scholar
  18. Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13(1):3–27. CrossRefGoogle Scholar
  19. Dupré C, Stevens CJ, Ranke T, Bleekers A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Change Biol 16(1):344–357. CrossRefGoogle Scholar
  20. Ebert G (1994) Die Schmetterlinge Baden-Württembergs. Band 3: Nachtfalter I. Eugen Ulmer, StuttgartGoogle Scholar
  21. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Bd. 2. Tagfalter II. Eugen Ulmer, StuttgartGoogle Scholar
  22. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12(6):677–688. CrossRefGoogle Scholar
  23. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Eugen Ulmer, StuttgartGoogle Scholar
  24. Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Biozönologie von Tagfaltern und Widderchen in einer alten Hudelandschaft. Abh Westf Mus Nat 66:1–256Google Scholar
  25. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43:335–347Google Scholar
  26. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa: von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westf Mus Naturkunde 68:11–57Google Scholar
  27. Fartmann T, Müller C, Poniatowski D (2013) Effects of coppicing on butterfly communities of woodlands. Biol Conserv 159:396–404. CrossRefGoogle Scholar
  28. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. CrossRefGoogle Scholar
  29. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574. CrossRefPubMedGoogle Scholar
  30. Franzén M, Nilsson SG (2008) How can we preserve and restore species richness of pollinating insects on agricultural land? Ecography 31(6):698–708. CrossRefGoogle Scholar
  31. Franzén M, Ranius T (2004) Habitat associations and occupancy patterns of burnet moths (Zygaenidae) in semi-natural pastures in Sweden. Entomol Fennica 15(2):91–101Google Scholar
  32. Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217(1–2):48–58. CrossRefGoogle Scholar
  33. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of Butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42Google Scholar
  34. Goffart P, Schtickzelle N, Turlure C (2010) Conservation and management of the habitats of two relict butterflies in the Belgian Ardenne: Proclossiana eunomia and Lycaena helle. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Heidelberg, pp 357–370CrossRefGoogle Scholar
  35. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology, 2 edn. Castlepoint Press, DalbeattieGoogle Scholar
  36. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. CrossRefPubMedGoogle Scholar
  37. Gutiérrez D, León-Cortés JL, Menéndez R, Wilson RJ, Cowley MJR, Thomas CD (2001) Metapopulations of four lepidopteran herbivores on a single host plant, Lotus corniculatus. Ecology 82(5):1371–1386.;2 CrossRefGoogle Scholar
  38. Hanski I (1999) Metapopulation Ecology. Oxford University Press, OxfordGoogle Scholar
  39. Hanski I, Kuussaari M, Nieminen M (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75(3):747–762. CrossRefGoogle Scholar
  40. Heikkinen RK, Luoto M, Kuussaari M, Pöyry J (2005) New insights into butterfly–environment relationships using partitioning methods. Proc R Soc B Biol Sci 272(1577):2203–2210. CrossRefGoogle Scholar
  41. Helbing F, Blaeser TP, Löffler F, Fartmann T (2014) Response of Orthoptera communities to succession in alluvial pine woodlands. J Insect Conserv 18(2):215–224. CrossRefGoogle Scholar
  42. Helbing F, Fartmann T, Löffler F, Poniatowski D (2017) Effects of local climate, landscape structure and habitat quality on leafhopper assemblages of acidic grasslands. Agric Ecosyst Environ 246:94–101. CrossRefGoogle Scholar
  43. Hoekstra JM, Boucher TM, Ricketts TH, Roberts C (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8(1):23–29. CrossRefGoogle Scholar
  44. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  45. Kalogirou S (2017) Package lctools.
  46. Konvička M, Benes J, Polakova S (2016) Smaller fields support more butterflies: comparing two neighbouring European countries with different socioeconomic heritage. J Insect Conserv 20(6):1113–1118. CrossRefGoogle Scholar
  47. Krämer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261. CrossRefGoogle Scholar
  48. Löffler F, Fartmann T (2017) Effects of landscape and habitat quality on Orthoptera assemblages of pre-alpine calcareous grasslands. Agric Ecosyst Environ 248:71–81. CrossRefGoogle Scholar
  49. Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M (2002) The effect of arable field margin composition on invertebrate biodiversity. Biol Conserv 106(2):259–271. CrossRefGoogle Scholar
  50. Menard S (2000) Coefficients of determination for multiple logistic regression analysis. Am Stat 54(1):17–24. CrossRefGoogle Scholar
  51. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145.;2 CrossRefGoogle Scholar
  52. Müller-Wille W (1981) Westfalen. Landschaftliche Ordnung und Bindung eines Landes, 2nd edn. Aschendorfsche Verlagsbuchhandlung, MünsterGoogle Scholar
  53. Naumann CM, Tarmann GM, Tremewan WG (1999) The western Palaearctic Zygaenidae (Lepidoptera). Apollo Books, StenstrupGoogle Scholar
  54. Nieminen M, Siljander M, Hanski I (2004) Structure and dynamics of Melitaea cinxia metapopulations. In: Ehrlich PR, Hanski I (eds) On the wings of checkerspots: a model system for population biology. Oxford University Press, Oxford, pp 63–91Google Scholar
  55. Nilsson SG, Franzén M, Pettersson LB (2013) Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden. Nat Conserv 6:31–48. CrossRefGoogle Scholar
  56. Öckinger E (2006) Possible metapopulation structure of the threatened butterfly Pyrgus armoricanus in Sweden. J Insect Conserv 10(1):43–51. CrossRefGoogle Scholar
  57. Öckinger E, Lindborg R, Sjödin NE, Bommarco R (2012) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 35(3):259–267. CrossRefGoogle Scholar
  58. Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Conserv 14(6):637–645. CrossRefGoogle Scholar
  59. Poniatowski D, Löffler F, Stuhldreher G, Borchard F, Krämer B, Fartmann T (2016) Functional connectivity as an indicator for patch occupancy in grassland specialists. Ecol Indic 67:735–742. CrossRefGoogle Scholar
  60. Poniatowski D, Stuhldreher G, Löffler F, Fartmann T (2018) Patch occupancy of grassland specialists: habitat quality matters more than habitat connectivity. Biol Conserv 225:237–244. CrossRefGoogle Scholar
  61. Poschlod P (2015) Geschichte der Kulturlandschaft: Entstehungsursachen und Steuerungsfaktoren der Entwicklung der Kulturlandschaft, Lebensraum- und Artenvielfalt in Mitteleuropa. Eugen Ulmer, StuttgartGoogle Scholar
  62. Pöyry J, Lindgren S, Salminen J, Kuussaari M (2005) Responses of butterfly and moth species to restored cattle grazing in semi-natural grasslands. Biol Conserv 122(3):465–478. CrossRefGoogle Scholar
  63. Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. R Development Core Team (2017) R: a language and environment for statistical computing. Accessed 26 September 2017
  65. Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands, 4th ed. In: Bundesamt für Naturschutz (ed) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 3: Wirbellose Tiere (Teil 1). Naturschutz Biol Vielfalt 70:167–194Google Scholar
  66. Rennwald E, Sobczyk T, Hofmann A (2011) Rote Liste und Gesamtartenliste der Spinnerartigen Falter (Lepidoptera: Bombyces, Sphinges s.l.) Deutschlands, 4th ed. In: Bundesamt für Naturschutz (ed) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 3: Wirbellose Tiere (Teil 1). Naturschutz Biol Vielfalt 70:243–283Google Scholar
  67. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M, Sieger S (2018) Package pROC.
  68. Roem WJ, Berendse F (2000) Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biol Conserv 92(2):151–161. CrossRefGoogle Scholar
  69. Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14(9):361–366. CrossRefPubMedGoogle Scholar
  70. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber–Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity: global biodiversity scenarios for the year 2100. Science 287:1770–1774. CrossRefPubMedGoogle Scholar
  71. Salz A, Fartmann T (2009) Coastal dunes as important strongholds for the survival of the rare Niobe fritillary (Argynnis niobe). J Insect Conserv 13(6):643–654. CrossRefGoogle Scholar
  72. Schirmel J, Fartmann T (2014) Coastal heathland succession influences butterfly community composition and threatens endangered butterfly species. J Insect Conserv 18(1):111–120. CrossRefGoogle Scholar
  73. Schmitt T (1993) Biotopansprüche von Erebia medusa brigobanna Fruhstorfer, 1917 (Rundaugen-Mohrenfalter) im Nordsaarland. Atalanta 24(1/2):33–56Google Scholar
  74. Schmitt T, Varga Z, Seitz A (2000) Forests as dispersal barriers for Erebia medusa (Nymphalidae, Lepidoptera). Basic Appl Ecol 1(1):53–59. CrossRefGoogle Scholar
  75. Schraml E, Fartmann T (2013) Frühlings-Mohrenfalter Erebia medusa ([Denis & Schiffermüller], 1775). In: Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 504–506Google Scholar
  76. Slamova I, Klecka J, Konvička M (2013) Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv Divers 6(3):243–254. CrossRefGoogle Scholar
  77. Sonderegger P (2005) Die Erebien der Schweiz. Peter Sonderegger, Brügg bei BielGoogle Scholar
  78. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63(4):337–365. CrossRefGoogle Scholar
  79. Streitberger M, Fartmann T (2015) Vegetation and climate determine ant-mound occupancy by a declining herbivorous insect in grasslands. Acta Oecol 68:43–49. CrossRefGoogle Scholar
  80. Stuhldreher G, Fartmann T (2014a) When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly. J Insect Conserv 18(5):965–979. CrossRefGoogle Scholar
  81. Stuhldreher G, Fartmann T (2014b) Cold-adapted species in a warming world – an explorative study on the impact of high winter temperatures on a continental butterfly. Entomol Exp Appl 151(3):270–279. CrossRefGoogle Scholar
  82. Stuhldreher G, Fartmann T (2015) Oviposition-site preferences of a declining butterfly Erebia medusa (Lepidoptera: Satyrinae) in nutrient-poor grasslands. Eur J Entomol 112(3):493–499. CrossRefGoogle Scholar
  83. Van Swaay CAM, Warren M (1999) Red data book of European butterflies (Rhopalocera). Nature and environment, no. 99. Council of Europe Publishing, Strasbourg, pp 1–260Google Scholar
  84. Van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10(2):189–209. CrossRefGoogle Scholar
  85. Van Swaay CAM, Maes D, Warren MS (2009) Conservation Status of European butterflies. In: Settele J, Shreeve TG, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 322–338Google Scholar
  86. Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) (2009) Grasslands in Europe of high nature value. KNNV Publishing, ZeistGoogle Scholar
  87. Villalba S, Gulinck H, Verbeylen G, Matthysen E (1998) Relationschip between patch connectivity and the occurence of the European red squirrel, Sciurus vulgaris, in forest fragments within heterogeneous landscapes. In: Dover JW, Bunce RGH (eds) Key concepts in landscape ecology. IALE UK, Preston, pp 205–220Google Scholar
  88. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75(7):1861–1876. CrossRefGoogle Scholar
  89. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human Domination of earth’s ecosystems. Science 277:494–499. CrossRefGoogle Scholar
  90. Waring P (2001) Grazing and cutting as conservation management tools: the need for a cautious approach, with some examples of rare moths which have been adversely affected. Entomol Rec J Var 113(5):193–200Google Scholar
  91. Wickmann PO (2009) Thermoregulation and habitat use in butterflies. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 55–61Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biodiversity and Landscape Ecology, Faculty of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
  2. 2.Institute of Biodiversity and Landscape Ecology (IBL)MünsterGermany

Personalised recommendations