Skip to main content

Advertisement

Log in

Hand searching versus pitfall trapping: how to assess biodiversity of ground beetles (Coleoptera: Carabidae) in high altitude equatorial Andes?

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The use of ground beetles (Coleoptera: Carabidae) as bioindicators of environmental change depends on the reliability and the effectiveness of the sampling methods. Those that have been tested in the temperate zone and in tropical forests still await experimentation in tropical high-altitude environments. For the first time, pitfall trapping and hand searching have been compared in Ecuadorian páramo above 4000 m a.s.l., in terms of practical effectiveness. The study was performed on six volcanoes and was based on the comparison of 28 sampling sessions (pitfall trapping and hand searching) performed along two different elevational belts [lower superpáramo (LSP) and upper superpáramo (USP)]. Analyses of sampling sessions showed that detected species richness is slightly higher with hand searching than with pitfall trapping, regardless of the elevation. Additionally, hand searching is more time-effective than pitfall trapping. The performance of the sampling method slightly varies when species assemblage composition is analysed in relation to elevational belts. In the LSP, hand searching and pitfall trapping should be simultaneously used to obtain exhaustive inventories of carabid biodiversity, since different species are likely to be collected by each method. In the USP, hand searching and pitfall trapping efficiency is very similar, but hand searching allows to collect a slightly larger number of species. Lastly, the sample-based rarefaction curves showed that four temporal replicates are mandatory to obtain a robust dataset and an exhaustive inventory of the true species richness and species assemblages composition. Our findings suggest a combined use of hand searching and pitfall trapping in the LSP, while both methods can be used alone for surveying carabids in the USP. Furthermore, hand searching is recommended if the aim is to obtain an inventory of species diversity, whereas pitfall trapping seems more convenient for fine grain ecological and comparative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen J (1995) A comparison of pitfall trapping and quadrat sampling of Carabidae (Coleoptera) on river banks. Entomol Fenn 6:65–77

    Google Scholar 

  • Andersen J, Arneberg P (2016) Hand collection as a method for assessing the community structure of carabid beetles. Pedobiologia 59(3):73–81

    Article  Google Scholar 

  • Anthelme F, Jacobsen D, Macek P, Meneses RI, Moret P, Beck S, Dangles O (2014) Biodiversity patterns and continental insularity in the tropical high-Andes. Arct Antarct Al Res 46:811–828

    Article  Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information criterion. J Wildl Manag 74:1175–1178

    Article  Google Scholar 

  • Bartoń K (2016) MuMIn: Multi-Model Inference. R package version 1.15.6

  • Bässler C, Hothorn T, Brandl R, Müller J (2013) Insects overshoot the expected upslope shift caused by climate warming. PLoS ONE 8:e65842. https://doi.org/10.1371/journal.pone.0065842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergthaler GJ, Relys V (2002) Suction sampling in alpine habitats: experiences and suggestions. In: Toft S, Scharff N (eds) European arachnology 2000. Aarhus University Press, Aarhus, pp 291–297

    Google Scholar 

  • Bouget C, Brustel H, Brin A, Noblecourt T (2008) Sampling saproxylic beetles with window flight traps: methodological insights. Rev Écol (Terre Vie) 10:21–32

    Google Scholar 

  • Brambilla M, Gobbi M (2014) A century of chasing the ice: delayed colonisation of ice-free sites by ground beetles along glacier forelands in the Alps. Ecography 37(1):33–42

    Article  Google Scholar 

  • Brandmayr P, Zetto Brandmayr T, Pizzolotto R (2005) I Coleotteri Carabidi per la valutazione ambientale e la conservazione delle biodiversità. Manuale operativo, vol 34. Agenzia per la Protezione dell‘Ambiente e per i Servizi Tecnici, IGER, Roma

    Google Scholar 

  • Bråten AT, Flø D, Hågvar S, Hanssen O, Mong CE, Aakra K (2012) Primary succession of surface active beetles and spiders in an alpine glacier foreland, central south Norway. Arct Antarct Alp Res 44(1):2–15

    Article  Google Scholar 

  • Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples [computer program]. Version 9.1.0. http://viceroy.eeb.uconn.edu/estimates/index.html. Accessed 23 Oct 2017

  • Erwin TL (1991) Natural history of the carabid beetles at the BIOLAT Biological Station, Rio Manu, Pakitza, Peru. Rev Peru Entomol 33:1–85

    Google Scholar 

  • Fiske IJ, Chandler RB (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43:1–23

    Article  Google Scholar 

  • Gobbi M, Fontaneto D, De Bernardi F (2006) Climate impacts on animal communities in space and time: the case of spider assemblages along an alpine glacier foreland. Glob Change Biol 12:1985–1992

    Article  Google Scholar 

  • Gobbi M, Rossaro B, Vater A, De Bernardi F, Pelfini M, Brandmayr P (2007) Environmental features influencing carabid beetle (Coleoptera) assemblages along a recently ice-free area in the Alpine region. Ecol Entomol 32:682–689

    Article  Google Scholar 

  • Gobbi M, Ballarin F, Brambilla M, Compostella C, Isaia M, Losapio G, Maffioletti C, Seppi R, Tampucci D, Caccianiga M (2017) Life in harsh environments: carabid and spider trait types and functional diversity on a debris-covered glacier and along its foreland. Ecol Entomol 42:838–848

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9 (Version 3.16)

    Google Scholar 

  • Hancock MH, Legg CJ (2012) Pitfall trapping bias and arthropod body mass. Insect Conser Diver 5(4):312–318

    Article  Google Scholar 

  • Hansson I (2012) Ecological principles of nature conservation application in temperate and boreal environments. Springer, Berlin

    Google Scholar 

  • Harry I, Drees C, Höfer H, Assmann T (2011) When to sample in an inaccessible landscape: a case study with carabids from the Allgäu (Northern Alps) (Coleoptera, Carabidae). ZooKeys. https://doi.org/10.3897/zookeys.100.1531

    Article  PubMed  PubMed Central  Google Scholar 

  • Hortal J, Borges PAV, Gaspar C (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. J Anim Ecol 75:274–287

    Article  Google Scholar 

  • Jedlikowski J, Chibowski P, Karasek T, Brambilla M (2016) Multi-scale habitat selection in highly territorial bird species: exploring the contribution of nest, territory and landscape levels to site choice in breeding rallids (Aves: Rallidae). Acta Oecol 73:10–20

    Article  Google Scholar 

  • Koivula MJ (2011) Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100:287–317

    Article  Google Scholar 

  • Kotze D, Brandmayr P, Casale A, Dauffy-Richard E, Dekoninck W, Koivula M, Lovei G, Mossakowski D, Noordijk J, Paarmann W, Pizzoloto R, Saska P, Schwerk A, Serrano J, Szyszko J, Taboada Palomares A, Turin H, Venn S, Vermeulen R, Zetto Brandmayr T (2011) Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100:55–148

    Article  Google Scholar 

  • Lin YC, James R, Dolman PM (2005) Are pitfalls biased? A comparison of carabid composition from pitfall trapping and hand searching in forest habitats. Br J Entomol Nat Hist 18:17–25

    Google Scholar 

  • Liu Y, Axmacher JC, Li L, Wang C, Yu Z (2007) Ground beetle (Coleoptera: Carabidae) inventories: a comparison of light and pitfall trapping. Bull Entomol Res 97(6):577–583

    Article  CAS  Google Scholar 

  • Lucky A, Erwin T, Witman JD (2002) Temporal and spatial diversity and distribution of arboreal Carabidae (Coleoptera) in a Western Amazonian rain forest. Biotropica 34(3):376–386

    Article  Google Scholar 

  • Maveety SA, Browne RA, Erwin TL (2011) Carabidae diversity along an altitudinal gradient in a Peruvian cloud forest (Coleoptera). Zookeys 147:651–666

    Article  Google Scholar 

  • Moret P (2005) Los coleópteros Carabidae del páramo en los Andes del Ecuador. Sistemática, ecología y biogeografía. Pontificia Universidad Católica del Ecuador, Centro de Biodiversidad y Ambiente, Monografía 2, Quito

  • Moret P (2009) Altitudinal distribution, diversity and endemicity of Carabidae (Coleoptera) in the páramos of Ecuadorian Andes. Annales de la Société entomologique de France (N.S.), 45:4, 500–510

    Article  Google Scholar 

  • Moret P, Aráuz M, Gobbi M, Barragán A (2016) Climate warming effects in the tropical Andes: first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador. Insect Conserv Divers 9:342–350

    Article  Google Scholar 

  • Nyundo BA, Yarro JG (2007) An assessment of methods for sampling carabid beetles (Coleoptera: Carabidae) in a montane rain forest. Tanzan J Sci 33:41–49

    Google Scholar 

  • Paarmann W, Adis J, Stork N, Gutzmann B, Stumpe P, Staritz B, Bolte H, Kuppers S, Holzkamp K, Niers C (2001) The structure of ground beetle assemblages (Coleoptera: Carabidae) at fig fruit falls (Moraceae) in a terra firme rain forest near Manaus (Brazil). J Trop Ecol 17(4):549–561

    Article  Google Scholar 

  • Pizzolotto R, Gobbi M, Brandmayr P (2014) Changes in ground beetle assemblages above and below the treeline of the dolomites after almost 30 years (1980/2009). Ecol Evol 4:1284–1294

    Article  Google Scholar 

  • Pizzolotto R, Alice A, Gobbi M, Brandmayr P (2016) Habitat diversity analysis along an altitudinal sequence of alpine habitats: the carabid beetle assemblages as a study model. Period Biol 118(3):241–254

    Article  Google Scholar 

  • R Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiv Conserv 12:487–506

    Article  Google Scholar 

  • Rainio J, Niemelä J (2006) Comparison of carabid beetle (Coleoptera: Carabidae) occurrence in rain forest and human-modified sites in south-eastern Madagascar. J Insect Conserv 10(3):219–228

    Article  Google Scholar 

  • Riley KN, Browne RA, Erwin T (2016) Results from two sampling techniques for carabid beetles (Coleoptera: Carabidae) in temporarily flooded and terra firme rainforest of western Amazonia. Stud Neotrop Fauna Environ 51(1):78–95

    Article  Google Scholar 

  • Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115

    Article  Google Scholar 

  • Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology. Academic Press, Amsterdam

    Google Scholar 

  • Schweiger AH, Irl SDH, Steinbauer MJ, Dengler J, Beierkuhnlein C (2016) Optimizing sampling approaches along ecological gradients. Methods Ecol Evol 7:463–471. https://doi.org/10.1111/2041-210X.12495

    Article  Google Scholar 

  • Sklenár P, Balslev H (2005) Superpáramo plant species diversity and phytogeography in Ecuador. Flora 200:416–433

    Article  Google Scholar 

  • Skvarla MJ, Larson JL, Dowling APG (2016) Pitfalls and preservatives: a review. J Entomol Soc Ontario 145:15–43

    Google Scholar 

  • Spence J, Niemelä J (1994) Sampling carabid assemblages with pitfall traps: the madness and the method. Can Entomol 126(3):881–894

    Article  Google Scholar 

  • Tampucci D, Gobbi M, Cabrini E, Compostella C, Marano G, Pantini P et al (2015) Plant and arthropod colonization of a glacier foreland in a peripheral mountain range. Biodiversity 16:213–223

    Article  Google Scholar 

  • Vater AE, Matthews JA. Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: patterns and models. Holocene 25(1):108–129

    Article  Google Scholar 

  • Zhao ZH, Shi PJ, Hui C, Ouyang F, Ge F, Li BL (2013) Solving the pitfalls of pitfall trapping: a two-circle method for density estimation of ground-dwelling arthropods. Methods Ecol Evol 4:865–871

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the SUMMITEX project funded by the CNRS (PICS-06724, 2015–2017 and MSHS-T USR 3414), the INSPYRAND project funded by the CNRS (PEPS 2016, INSHS and Réseau National des MSH), and three PUCE projects (2016–2017): Influencia de la altitud en comunidades de insectos de importancia forense, code N13456A, Efecto del rápido retroceso glaciar sobre la biodiversidad en ecosistemas tropicales de altura, code M13434, and Monitoring Climate Change Impact on the High Andes (MICCAA), code N13419. The Ecuadorian Ministerio de Ambiente provided research and collection Permits Numbers 005-12-IC-FAU-DNB/MA, 003-15-IC-FAU-DNB/MA, 005-14-IC-FAU-DNB/MA and 005-15-IC-FAU-DNB/MA. Mauro Gobbi’s field trip to Ecuadorian Andes was co-funded by CNRS and Autonomous Province of Trento (Italy), patronage by Club Alpino Italiano (Sezione Val Comelico) and supported by the technical sponsor GM Calze srl. Special thanks are due to Saúl Aguirre, María de los Ángeles Aráuz, Esteban Bastidas, Verónica Crespo for their help during the field work, and to Ricardo Jaramillo and Priscilla Muriel for the funding, logistic, administrative and data management support on the Antisana site. The fieldtrip was also funded by grants from Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT, Arca de Noé Initiative; S. R. Ron and O. Torres-Carvajal Principal Investigators).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Moret.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10841_2018_82_MOESM1_ESM.xlsx

Supplementary material 1 List of the species collected by hand searching and by pitfall trapping on each sampling site. (XLSX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobbi, M., Barragán, Á., Brambilla, M. et al. Hand searching versus pitfall trapping: how to assess biodiversity of ground beetles (Coleoptera: Carabidae) in high altitude equatorial Andes?. J Insect Conserv 22, 533–543 (2018). https://doi.org/10.1007/s10841-018-0082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-018-0082-8

Keywords

Navigation