Abstract
Knowing the spatial variation of insect and arachnid assemblages and their relationship with habitat variables is critical to understand the structure and dynamics of these communities in arid environments. The aim of this paper was to analyze the variation in ground-dwelling arthropod assemblages across three representative vegetation units of the Área Natural Protegida Península Valdés (Patagonia, Argentina). We asked whether environmental differences among representative vegetation units were associated to distinct arthropod assemblages. We selected three plant communities: grass, dwarf-shrub, and shrub steppes, and established three sampling sites within each of them. We measured variables of vegetation structure and soil characteristics and collected the arthropods using 10 pitfall traps per site. We analyzed the structure of arthropod assemblages at both family and ant species taxonomic levels. Each plant community displayed a distinctive assemblage, with differences in diversity, taxa abundance, trophic structure and functional groups of ants. Vegetation variables explained a higher proportion of the variation in the structure of the ground-dwelling arthropod assemblages than the soil variables. This work highlights the importance of the different vegetation units for the conservation of ground-dwelling arthropod biodiversity in Península Valdés.






References
Akter M, Miah M, Hassan M et al (2016) Textural influence on surface and subsurface soil temperatures under various conditions. J Environ Sci Nat Resour 8:141. https://doi.org/10.3329/jesnr.v8i2.26882
Alvarez M, del P, Weiler, Hernández NE MA (2010) Linking geomorphology and hydrodynamics: a case study from Península Valdés, Patagonia, Argentina. Hydrogeol J 18:473–486. https://doi.org/10.1007/s10040-009-0528-x
Andersen AN, Majer JD (2004) Ants show the way Down Under: invertebrates as bioindicators in land management. Front Ecol Environ 2:291–298
Andersen AN, Fisher A, Hoffmann BD et al (2004) Use of terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular reference to ants. Austral Ecol 29:87–92
Arias AM, Pazos GE, Udrizar Sauthier DE (2017) Introducción: contexto geográfico, historia y manejo para la conservación. In: Udrizar Sauthier DE, Pazos GE, Arias AM (eds) Reserva de Vida Silvestre San Pablo de Valdés 10 años. Conservando el patrimonio natural y cultural de Península Valdés Patagonia Argentina. Fundación Vida Silvestre Argentina & CONICET, Buenos Aires
Baldi R, Cheli G, Udrizar Sauthier DE et al (2017) Animal diversity, distribution and conservation. In: Bouza P, Bilmes A (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer, Cham, pp 263–303
Battisti C, Poeta G, Fanelli G (2016) An introduction to disturbance ecology. Springer, Cham
Bertiller MB, Beeskow AM, Blanco PD et al (2017) Vegetation of Península Valdés: priority sites for conservation. In: Bouza P, Bilmes A (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer, Cham, pp 131–159
Bestelmeyer BT, Wiens JA (1996) The effects of land use on the structure of ground-foraging ant communities in the Argentine Chaco. Ecol Appl 6:1225–1240
Bestelmeyer BT, Wiens JA (2001) Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecol Appl 11:1123–1140
Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653
Bisigato AJ, Saín CL, Campanella MV, Cheli GH (2015) Leaf traits, water stress, and insect herbivory: is food selection a hierarchical process? Arthropod-Plant Interact 9:477–485. https://doi.org/10.1007/s11829-015-9387-7
Blanco PD, Rostagno CM, del Valle HF et al (2008) Grazing impacts in vegetated dune fields: predictions from spatial pattern analysis. Rangel Ecol Manag 61:194–203. https://doi.org/10.2111/06-063.1
Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York
Boulton AM, Davies KF, Ward PS (2005) Species richness, abundance, and composition of ground-dwelling ants in northern California grasslands: role of plants, soil, and grazing. Environ Entomol 34:96–104
Bouyoucos GJ (1965) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465
Bouza P, Bilmes A, del Valle H, Rostagno CM (2017a) Late Cenozoic landforms and landscape evolution of Península Valdés. In: Bouza P, Bilmes A (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer, Cham, pp 105–129
Bouza P, Ríos I, Rostagno CM, Saín C (2017b) Soil–geomorphology relationships and pedogenic processes in Península Valdés. In: Bouza P, Bilmes A (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer, Cham, pp 161–190
Campanella MV, Bertiller MB (2008) Plant phenology, leaf traits and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. J Veg Sci 19:75–85. https://doi.org/10.3170/2007-8-18333
Chao A, Gotelli NJ, Hsieh TC et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1
Cheli GH (2009) Efectos del disturbio por pastoreo ovino sobre la comunidad de artrópodos epígeos en Península Valdés (Chubut, Argentina). Universidad Nacional del Comahue Centro Regional Universitario Bariloche, Bariloche
Cheli GH, Corley JC (2010) Efficient sampling of ground-dwelling arthropods using pitfall traps in arid steppes. Neotrop Entomol 39:912–917
Cheli GH, Corley J, Bruzzone O et al (2010) The ground-dwelling arthropods community from Península Valdés (Patagonia, Argentina). J Insect Sci 10:50
Cheli GH, Pazos GE, Flores GE, Corley JC (2016) Efecto de los gradientes de pastoreo ovino sobre la vegetación y el suelo en Península Valdés, Patagonia, Argentina. Ecol Austral 26:200–211
Chen X, Adams B, Bergeron C et al (2015) Ant community structure and response to disturbances on coastal dunes of Gulf of Mexico. J Insect Conserv 19:1–13. https://doi.org/10.1007/s10841-014-9722-9
Chenchouni H, Menasria T, Neffar S et al (2015) Spatiotemporal diversity, structure and trophic guilds of insect assemblages in a semi-arid Sabkha ecosystem. PeerJ 3:e860. https://doi.org/10.7717/peerj.860
Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth
Claver S, Silnik SL, Campón FF (2014) Response of ants to grazing disturbance at the central Monte Desert of Argentina: community descriptors and functional group scheme. J Arid Land 6:117–127. https://doi.org/10.1007/s40333-013-0190-y
Colwell RK, Chao A, Gotelli NJ et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. https://doi.org/10.1093/jpe/rtr044
Coronato F, Pessacg N, Alvarez M, del P (2017) The climate of Península Valdés within a regional frame. In: Bouza P, Bilmes A (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer, Cham, pp 85–104
Crawley MJ (2013) The R book, 2nd edn. Wiley, Chichester
Davidson DT (1965) Penetrometer measurements. In: Black CA (ed) Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling. ASA, Madison, pp 472–484
de los Santos A, de Nicolás JP, Ferrer F (2002) Habitat selection and assemblage structure of darkling beetles (Col. Tenebrionidae) along environmental gradients on the island of Tenerife (Canary Islands). J Arid Environ 52:63–85
Farji-Brener AG, Corley JC, Bettinelli J (2002) The effects of fire on ant communities in north-western Patagonia: the importance of habitat structure and regional context. Divers Distrib 8(4):235–243
Farji-Brener AG, Carvajal D, Gei MG et al (2008) Direct and indirect effects of soil structure on the density of an antlion larva in a tropical dry forest. Ecol Entomol 33:183–188. https://doi.org/10.1111/j.1365-2311.2007.00948.x
Feng Q, Li F-R, Liu J-L et al (2015) Ground-dwelling arthropod community response to native grassland conversion in a temperate desert of northwestern China. J Insect Conserv 19:105–117. https://doi.org/10.1007/s10841-014-9751-4
Fernández F (ed) (2003) Introducción a las hormigas de la región neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá
Flores GE, Lagos SJ, Roig-Juñent S (2004) Artrópodos epígeos que viven bajo la copa del algarrobo (Prosopis flexuosa) en la Reserva Telteca (Mendoza, Argentina). MULTEQUINA 13:71–90
Gessé F, Monleón-Getino T, Goula M (2014) Biodiversity analysis of true bug assemblages (hemiptera, heteroptera) in four habitats in the Garraf Natural Park (Barcelona, Spain). J Insect Sci 14:1. https://doi.org/10.1093/jisesa/ieu145
Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, New York
González-Reyes AX, Corronca JA, Rodriguez-Artigas SM (2017) Changes of arthropod diversity across an altitudinal ecoregional zonation in Northwestern Argentina. PeerJ 5:e4117. https://doi.org/10.7717/peerj.4117
Gotelli NJ, Ellison AM (2002) Biogeography at a regional scale: determinants of ant species density in New England bogs and forests. Ecology 83:1604–1609
Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9
Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecol 28:444–464
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. https://doi.org/10.1002/bimj.200810425
Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613
Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x
Jung M, Kim S, Hunsung K, Joon-Ho L (2008) Biodiversity and community structure of ground-dwelling spiders in four different field margin types of agricultural landscapes in Korea. Appl Soil Ecol 38:185–195
Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. https://doi.org/10.1007/s00442-004-1497-3
Legendre P, Legendre L (2012) Numerical ecology, 3rd English edition. Elsevier, Amsterdam
Li F-R, Liu J-L, Liu C-A et al (2013) Shrubs and species identity effects on the distribution and diversity of ground-dwelling arthropods in a Gobi desert. J Insect Conserv 17:319–331. https://doi.org/10.1007/s10841-012-9512-1
Magoba RN, Samways MJ, Simaika JP (2015) Soil compaction and surface-active arthropods in historic, agricultural, alien, and recovering vegetation. J Insect Conserv 19:501–508. https://doi.org/10.1007/s10841-015-9771-8
Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford
Mazía NC, Chaneton E, Kitzberger T (2006) Small-scale habitat use and assemblage structure of ground-dwelling beetles in a Patagonian shrub steppe. J Arid Environ 67:177–194
Oksanen J (2015) Multivariate analysis of ecological communities in R: Vegan Tutorial
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H.(2017). vegan: Community Ecology Package. R package version 2.4-1. http://CRAN.R-project.org/package=vegan
Passera CB, Dalmasso AD, Borseto O (1986) Método de “Point Quadrat” modificado. Subcomité Asesor del Árido Subtropical Argentino
Pazos GE, Ares JO, Bertiller MB (2010) Quantitative assessment of shrub–grass mosaic development in grazed shrublands: an example in the Patagonian Monte (Argentina). J Arid Environ 74:998–1002. https://doi.org/10.1016/j.jaridenv.2009.12.004
Pazos GE, Rodríguez MV, Blanco PD (2017) Vegetación terrestre. Descripción, monitoreo y relación con el clima y los herbívoros. In: Udrizar Sauthier DE, Pazos GE, Arias AM (eds) Reserva de Vida Silvestre San Pablo de Valdés 10 años. Conservando el patrimonio natural y cultural de Península Valdés Patagonia Argentina. Fundación Vida Silvestre Argentina & CONICET, Buenos Aires
Pérez-Harguindeguy N, Díaz S, Vendramini F et al (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments: leaf traits, herbivory and preference. Austral Ecol 28:642–650. https://doi.org/10.1046/j.1442-9993.2003.01321.x
Prather CM, Pelini SL, Laws A et al (2013) Invertebrates, ecosystem services and climate change. Biol Rev 88:327–348. https://doi.org/10.1111/brv.12002
R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Ríos-Casanova L, Dávila P, Godínez-Alvarez H, Rico-Gray V (2015) Diversity of ants inhabiting a mosaic of environmental conditions in a semi-desert of Central Mexico. Southwest Entomol 40:307–322. https://doi.org/10.3958/059.040.0207
Roig-Juñent S, Claps LE, Morrone JJ (2014) Biodiversidad de Artrópodos Argentinos volumen 3. INSUE-UNT, San Miguel de Tucumán
Rostagno CM, Bouza PJ, Videla LS et al (2017) Suelos y geomorfología. In: Udrizar Sauthier DE, Pazos GE, Arias AM (eds) Reserva de Vida Silvestre San Pablo de Valdés 10 años. Conservando el patrimonio natural y cultural de Península Valdés Patagonia Argentina. Fundación Vida Silvestre Argentina & CONICET, Buenos Aires
Samways MJ (1994) Insect conservation biology. Chapman and Hall, London
Schaffers AP, Raemakers IP, Sýkora KV, ter Braak CJF (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794. https://doi.org/10.1890/07-0361.1
Schowalter TD (2016) Insect ecology: an ecosystem approach, 4th edn. Elsevier Academic Press, San Diego
Scudder GGE (2009) The importance of insects. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society. Wiley, Chichester, pp 7–31
Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070
Sola FJ, Peri PL, Huertas L et al (2016) Above-ground arthropod community structure and influence of structural-retention management in southern Patagonian scrublands, Argentina. J Insect Conserv 20:929–944. https://doi.org/10.1007/s10841-016-9918-2
Staubus WJ, Boyd ES, Adams TA et al (2015) Ant communities in native sage scrub, non-native grassland, and suburban habitats in Los Angeles County, USA: conservation implications. J Insect Conserv 19:669–680. https://doi.org/10.1007/s10841-015-9790-5
Tews J, Brose U, Grimm V et al (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92
Triplehorn CA, Johnson NF, Borror DJ (2005) An introduction to the study of insects, 7th edn. Thomson, Brooks/Cole, Australia
Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York
Walkley A, Black IA (1934) An examination of the Degjareff method for determinig soil organic matter and a proposed modification of the chromi acid titanion method. J Am Soc Agron 24:256–275
Wenninger EJ, Inouye RS (2008) Insect community response to plant diversity and productivity in a sagebrush–steppe ecosystem. J Arid Environ 72:24–33. https://doi.org/10.1016/j.jaridenv.2007.04.005
Werenkraut V, Ruggiero A (2012) Altitudinal variation in the taxonomic composition of ground-dwelling beetle assemblages in NW Patagonia, Argentina: environmental correlates at regional and local scales. Insect Conserv Divers 6:89–92
Whitford WG (2000) Keystone arthropods as webmasters in desert ecosystems. In: Coleman DC, Hendrix PF (eds) Invertebrates as webmasters in ecosystems. CABI Publishing, Wallingford, pp 25–42
Wickham H (2009) ggplot2. Springer, New York
Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge
Zuur AF, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York
Acknowledgements
We thank Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC CONICET-CENPAT) and Fundación Vida Silvestre Argentina for providing logistical support, access to the Reserva de Vida Silvestre San Pablo de Valdés and other facilities. Dirección de Flora y Fauna Silvestre de la Provincia Del Chubut and Subsecretaría de Conservación y Áreas Protegidas de la Provincia Del Chubut granted the collection permission. We also thank professional taxonomists who collaborated with the determination of the collected material: G. Flores, S. Roig-Juñent, P. Dellapé, M. Ramírez, Fabiana Cuezzo and A. Ojanguren-Affilastro. Finally, we thank all field and laboratory assistants: L. Castillo, M. Gowland, N. Velazquez Barloa, N. Martínez Román., C. Saín and L. Videla. This study was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), by grants of the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT, Argentina): PICT 2012-2660; PIP 112-201101-00987 and PIP 112-201201-00369 (CONICET, Argentina), by government of the Chubut province (Secretaria de Ciencia, Tecnología e Innovación productiva de la provincia Del Chubut), and the iBOL Project. Anonymous reviewers contributed with valuable comments and suggestions to improve this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Martínez, F.J., Cheli, G.H. & Pazos, G.E. Structure of ground-dwelling arthropod assemblages in vegetation units of Área Natural Protegida Península Valdés, Patagonia, Argentina. J Insect Conserv 22, 287–301 (2018). https://doi.org/10.1007/s10841-018-0062-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10841-018-0062-z