Advertisement

Journal of Insect Conservation

, Volume 22, Issue 2, pp 277–286 | Cite as

Long-term stability of the hawkmoth fauna (Lepidoptera, Sphingidae) in a protected area of Brazilian Atlantic Rain Forest

  • Pedro I. Chiquetto-Machado
  • Felipe W. AmorimEmail author
  • Marcelo Duarte
ORIGINAL PAPER

Abstract

Hawkmoths are an important component of tropical ecosystems, with significant roles as herbivores and pollinators. These moths can be used as indicators in biodiversity assessments because they can be easily sampled and identified. However, hawkmoths have seldom been surveyed over the long term for this purpose, especially in the Neotropical region. Considering that long-term datasets are of indisputable importance for understanding and monitoring temporal changes in biodiversity, this study assessed long-term changes in the hawkmoth fauna in a protected Atlantic Rain Forest area over a period of 64 years. We used historical and recent empirical datasets to ask whether faunal-diversity patterns and species composition have changed over time. We used individual- and sample-based rarefaction and extrapolation curves based on Hill number (diversity order of q = 0) to compare species richness, and the probability version of the abundance-based Chao-Jaccard index to assess beta diversity over time. To assess changes in faunal composition, we conducted a nonmetric multidimensional scaling analysis and performed an analysis of similarities to test whether the community composition has changed. Our results clearly showed long-term stability of the hawkmoth community over the 64 years, despite the growing human-induced landscape changes that occurred in the region surrounding the study area during the last 6 decades. This study emphasizes the importance of large remnants of Atlantic Forest for long-term maintenance of both functional diversity and ecosystem functioning.

Keywords

Atlantic Forest Brazil Diversity Insect conservation Pollinator Sphingid 

Notes

Acknowledgements

We are grateful to Ana Maria Vasques, Geraldo Masélio dos Santos, Firmino Rodrigues Gomes, and Mercedes Águido da Silva (Museu de Zoologia da Universidade de São Paulo) for the logistical support for field trips; to Fabiano Fabian Albertoni and Alessandra Zola Ramin for their indispensable aid during field work; to Carlos Zucco and Fabiano Fabian Albertoni for providing the map used in this article; and to Renato de Oliveira e Silva (Museu de Zoologia da Universidade de São Paulo) for his daily assistance with the curatorial procedures in the Lepidoptera collection. We are also very grateful to two anonymous reviewers and to for their valuable comments and suggestions that greatly improved the manuscript. PICM was awarded a scholarship from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant 2012/12087-0) for the execution of the research. This study was also funded by FAPESP Grants 2002/13898-0, 2010/14682-8 and 2011/50225-3, and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 484469/2013 to FWA, and Grant 563332/2010-7—SISBIOTA/Rede Nacional de Pesquisa e Conservação de Lepidópteros to MD). MD has been supported by CNPq fellowships (305905/2012-0 and 311083/2015-3). We also thank PROEX/CAPES (Programa de Pós-Graduação em Zoologia, Instituto de Biociências, USP) for providing funds for English revision.

Compliance with ethical standards

Conflict of interest

We have no conflicts of interest to disclose. All necessary permits were obtained for the field study, which did not involve endangered or protected species.

Supplementary material

10841_2018_61_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4508 KB)
10841_2018_61_MOESM2_ESM.docx (69 kb)
Supplementary material 2 (DOCX 69 KB)

References

  1. Amorim FW, Ávila RS Jr, Camargo AJA, Vieira AL, Oliveira PE (2009) A hawkmoth crossroads? Species richness, seasonality and biogeographical affinities of Sphingidae in a Brazilian Cerrado. J Biogeogr 36:662–674CrossRefGoogle Scholar
  2. Amorim FW, Wyatt GE, Sazima M (2014) Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest. Brazil Naturwissenschaften 101:893–905CrossRefPubMedGoogle Scholar
  3. Ballesteros-Mejia L, Kitching IJ, Jetz W, Nagel P, Beck J (2013) Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingids moths. Global Eco Biogeogr 22:586–595CrossRefGoogle Scholar
  4. Barwell LJ, Isaac NJB, Kunin WE (2015) Measuring β-diversity with species abundance data. J Anim Ecol 84:1112–1122CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beck J, Kitching IJ, Linsenmair KE (2006a) Effects of habitat disturbance can be subtle yet significant: biodiversity of hawkmoth-assemblages (Lepidoptera: Sphingidae) in Southeast-Asia. Biodivers Conserv 15:465–486CrossRefGoogle Scholar
  6. Beck J, Kitching IJ, Linsenmair KE (2006b) Measuring range size of South-East Asian hawkmoths (Lepidoptera: Sphinidae): effects of scale, resolution and phylogeny. Global Ecol Biogeogr 15:339–348CrossRefGoogle Scholar
  7. Beck J, Kitching IJ, Linsenmair KE (2006c) Determinants of regional species richness: an empirical analysis of the number of hawkmoth species (Lepidoptera: Sphingidae) on the Malesian archipelago. J Biogeogr 33:694–706CrossRefGoogle Scholar
  8. Beck J, Kitching IJ, Linsenmair KE (2006d) Wallace’s line revisited: has vicariance or dispersal shaped the distribution of Malesian hawkmoths (Lepidoptera: Sphingidae)? Biol J Linn Soc 89:455–468CrossRefGoogle Scholar
  9. Bradshaw CJA, Sodhi NS, Brook BW (2009) Tropical turmoil: a biodiversity tragedy in progress. Front Ecol Environ 7:79–87CrossRefGoogle Scholar
  10. Brose U (2003) Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure of plant diversity? Oecologia 135:407–413CrossRefPubMedGoogle Scholar
  11. Brown KS Jr (1997) Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoring. J Insect Conserv 1:25–42CrossRefGoogle Scholar
  12. Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615CrossRefPubMedGoogle Scholar
  13. Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168CrossRefPubMedGoogle Scholar
  14. Camargo AJA, Camargo NF, Corrêa DCV, Camargo WRF, Vieira EM, Marini-Filho O, Amorim FW (2016) Diversity patterns and chronobiology of hawkmoths (Lepidoptera, Sphingidae) in the Brazilian Amazon rainforest. J Insect Conserv 20:629–641CrossRefGoogle Scholar
  15. Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  16. Chao A, Chazdon RL, Colwell RK, Shen TJ (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361–371CrossRefPubMedGoogle Scholar
  17. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67CrossRefGoogle Scholar
  18. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structures. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  19. Colombo AF, Joly CA (2010) Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70:697–708CrossRefPubMedGoogle Scholar
  20. Conrad KF, Woiwod IP, Parsons M, Fox R, Warren MS (2004) Long-term population trends in widespread British moths. J Insect Conserv 8:119–136CrossRefGoogle Scholar
  21. Cruz-Neto O, Machado IC, Duarte JA Jr, Lopes AV (2011) Synchronous phenology of hawkmoth (Sphingidae) and Inga species (Fabaceae–Mimosoideae): implications for the restoration of the Atlantic forest of northeastern Brazil. Biodivers Conserv 20:751–765CrossRefGoogle Scholar
  22. D’Abrera B (1986) Sphingidae mundi: hawk moths of the world. EW Classey Ltd, OxfordGoogle Scholar
  23. DAEE (2016) Departamento de Águas e Energia Elétrica, Banco de Dados Hidrológicos, version 20160122.1. http://www.hidrologia.daee.sp.gov.br/Default.aspx. Accessed 31 Mar 2017
  24. Darrault RO, Schlindwein C (2002) Esfingídeos (Lepidoptera, Sphingidae) no Tabuleiro Paraibano, nordeste do Brasil: abundância, riqueza e relação com plantas esfingófilas. Rev Bras Zool 19:429–443CrossRefGoogle Scholar
  25. Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Ann Rev Env Resour 28:137–167CrossRefGoogle Scholar
  26. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406CrossRefPubMedGoogle Scholar
  27. Duarte M, Carlin LF, Marconato G (2008) Light-attracted hawkmoths (Lepidoptera: Sphingidae) of Boracéia, municipality of Salesópolis, state of São Paulo, Brazil. Check List 4:123–136CrossRefGoogle Scholar
  28. Fundação F (2017) Governo do Estado de São Paulo, Secretaria do Meio Ambiente, Parque Estadual da Serra do Mar. http://www.parqueestadualserradomar.sp.gov.br/pesm/. Accessed 31 Mar 2017
  29. Gagic V, Bartomeus I, Jonsson T, Taylor A, Winqvist C, Fischer C, Slade EM, Steffan-Dewenter I, Emmerson M, Potts SG, Tscharntke T, Weisser W, Bommarco R (2015) Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc R Soc B 282:20142620CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381CrossRefPubMedGoogle Scholar
  31. Gonçalves RB, Sydney NV, Oliveira PS, Artmann NO (2014) Bee and wasp responses to a fragmented landscape in southern Brazil. J Insect Conserv 18:1193–1201CrossRefGoogle Scholar
  32. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  33. Haber WA, Frankie GW (1989) A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21:155–172CrossRefGoogle Scholar
  34. Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35CrossRefPubMedGoogle Scholar
  35. Hsieh TC, Ma KH, Chao A (2016) Interpolation and extrapolation for species diversity version 2.0.12. https://cran.r-project.org/web/packages/iNEXT/index.html. Accessed 16 Apr 2017
  36. IBGE (2017) Estimativa da população residente no Brasil e unidades da federação com data de referência em 1° de julho de 2017. Instituto Brasileiro de Geografia e Estatística. ftp://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2017/estimativa_dou_2017.pdf. Accessed 28 Mar 2018
  37. Ignatov II, Janovec JP, Centeno P, Tobler MW, Grados J, Lamas G, Kitching IJ (2011) Patterns of richness, composition, and distribution of sphingid moths along an elevational gradient in the Andes-Amazon region of southeastern Peru. Ann Entomol Soc Am 104:68–76CrossRefGoogle Scholar
  38. Irwin A (2018) The dark side of light. Nature 553:268–270CrossRefPubMedGoogle Scholar
  39. Janzen DH (1984) Two ways to be a tropical big moth: Santa Rosa saturniids and sphingids. Oxford Surv Evol Biol 1:85–140Google Scholar
  40. Janzen DH (1986) Biogeography of an unexceptional place: what determines the saturniid and sphingid moth fauna of Santa Rosa National Park, Costa Rica, and what does it mean to conservation biology? Brenesia 25/26:51–87Google Scholar
  41. Janzen DH (1987) How moths pass the dry season in a Costa Rican dry forest. Int J Trop Insect Sci 8(4–5–6):489–500CrossRefGoogle Scholar
  42. Johnson SD, Raguso R (2016) The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa. Ann Bot 117:25–36CrossRefPubMedGoogle Scholar
  43. Johnson SD, Moré M, Amorim FW, Haber WA, Frankie GW, Stanley DA, Coccuci AA, Raguso RA (2017) The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct Ecol 31:101–115CrossRefPubMedGoogle Scholar
  44. Justino CEL, dos Santos EF, Noll FB (2016) Diversity of Tiphiidae (Insecta: Hymenoptera) in the fragmented Brazilian semi-deciduous Atlantic Forest. J Insect Conserv 20(3):417–431CrossRefGoogle Scholar
  45. Kitching IJ (2017) Sphingidae taxonomic inventory. http://sphingidae.myspecies.info/ Accessed 17 Mar 2017
  46. Kitching IJ, Cadiou J-M (2000) Hawkmoths of the world: an annotated and illustrated revisionary checklist (Lepidoptera: Sphingidae). Cornell University Press, IthacaGoogle Scholar
  47. Knop E, Zoller L, Ryser R, Gerper C, Hörler M, Fontaine C (2017) Artificial light at night as a new threat to pollination. Nature 548:206–209PubMedGoogle Scholar
  48. Köppen W (1948) Climatología. Fondo de Cultura Económica, MéxicoGoogle Scholar
  49. Laroca S, Mielke OHH (1975) Ensaios sobre ecologia de comunidade em Sphingidae na Serra do Mar, Paraná, Brasil (Lepidoptera). Rev Bras Biol 35:1–19Google Scholar
  50. Lassau SA, Hochuli DF, Cassis G, Reid CAM (2005) Effects of habitat complexity on forest beetle diversity: do functional groups respond consistently? Divers Distrib 11:73–82CrossRefGoogle Scholar
  51. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  52. MacGregor CJ, Pocock MJO, Fox R, Evans DM (2015) Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol Entomol 40:187–198CrossRefPubMedGoogle Scholar
  53. Magurran AE, Baillie SR, Buckland ST, Dick JMcP, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol 25:574–582CrossRefPubMedGoogle Scholar
  54. Marinoni RC, Dutra RRC, Mielke OHH (1999) Levantamento da fauna entomológica no Estado do Paraná. IV. Sphingidae (Lepidoptera). Diversidade alfa e estrutura de comunidade. Rev Bras Zool 16:223–240CrossRefGoogle Scholar
  55. Martin A, Soares A, Bizarro J (2011) A guide to the Hawkmoths of the Serra dos Órgãos, South-eastern Brazil. REGUA Publications, OxfordGoogle Scholar
  56. Martins DJ, Johnson SD (2013) Interactions between hawkmoths and flowering plants in East Africa: polyphagy and evolutionary specialization in an ecological context. Biol J Linn Soc 110:199–213CrossRefGoogle Scholar
  57. Melo AS (2016) Community ecology analyses version 1.6.4. https://CRAN.R-project.org/package=CommEcol. Accessed 13 Mar 2017
  58. Mittermeier RA, Myers N, Thomsen JB (1998) Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Conserv Biol 12:516–520CrossRefGoogle Scholar
  59. Moré M, Kitching IJ, Cocucci AA (2005) Sphingidae: esfíngidos de Argentina. Literature of Latin America, Buenos AiresGoogle Scholar
  60. Moré M, Amorim FW, Benitez-Vieyra S, Medina AM, Sazima M, Cocucci AA (2012) Armament imbalances: match and mismatch in plant-pollinator traits of highly-specialized long-spurred orchids. PLoS ONE 7:e41878CrossRefPubMedPubMedCentralGoogle Scholar
  61. Morellato LPC, Alberton B, Alvarado S et al (2016) Linking plant phenology to conservation biology. Biol Conserv 195:60–72CrossRefGoogle Scholar
  62. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservations priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  63. Nilsson LA, Jonsson L, Ralison L, Randrianjohany E (1987) Angraecoid orchids and hawkmoths in central Madagascar: specialized pollination systems and generalist foragers. Biotropica 19:310–318CrossRefGoogle Scholar
  64. Nilsson SG, Franzén M, Jönsson E (2008) Long-term land-use changes and extinction of specialised butterflies. Insect Conserv Diver 1:197–207Google Scholar
  65. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) Ordination methods, diversity analysis and other functions for community and vegetation ecologists version 2.4-3. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 17 Mar 2017
  66. Paglia AP, Fonseca GAB, Rylands AB et al (2012) Annotated checklist of Brazilian mammals, 2nd edn. Occasional Paper No. 6. Conservation International, ArlingtonGoogle Scholar
  67. Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501CrossRefPubMedGoogle Scholar
  68. Prefeitura de São Paulo (2018) População recenseada: região metropolitana e municípios. 1950, 1960, 1970, 1980, 1991, 2000 e 2010. Infocidade. http://infocidade.prefeitura.sp.gov.br/htmls/7_populacao_recenseada_1950_10552.html. Accessed 04 Mar 2018
  69. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 31 Jan 2017
  70. Rafael JA, Aguiar AP, Amorim DS (2009) Knowledge of insect diversity in Brazil: challenges and advances. Neotrop Entomol 38:565–570CrossRefPubMedGoogle Scholar
  71. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  72. Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34:L09708CrossRefGoogle Scholar
  73. Sazatornil FD, Moré M, Benitez-Vieyra S, Cocucci AA, Kitching IJ, Schlumpberger BO, Oliveira PE, Sazima M, Amorim FW (2016) Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. J Anim Ecol 85(6):1586–1594CrossRefPubMedGoogle Scholar
  74. Shuey J, Labus P, Carneiro E, Dias FMS, Leite LAR, Mielke OH (2017) Butterfly communities respond to structural changes in forest restorations and regeneration in lowland Atlantic Forest, Paraná, Brazil. J Insect Conserv 21(3):545–557CrossRefGoogle Scholar
  75. Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (2009) Diversidade taxonômica na Floresta Atlântica. In: Stehmann JR, Forzza RC, Salino A, Sobral M, Costa DP, Kamino LHY (eds) Plantas da Floresta Atlântica. Instituto de Pesquisas, Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 3–12Google Scholar
  76. Summerville KS, Crist TO (2005) Temporal patterns of species accumulation in a survey of Lepidoptera in a beech-maple forest. Biodivers Conserv 14:3393–3406CrossRefGoogle Scholar
  77. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92CrossRefGoogle Scholar
  78. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302CrossRefGoogle Scholar
  79. Travassos Filho L, Camargo HFA (1958) A Estação Biológica de Boracéia. Arq Zool 11:1–21Google Scholar
  80. van Nieukerken EJ, Kaila L, Kitching IJ et al (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:212–221Google Scholar
  81. Vieira KCR, Moraes SS, Chiquetto-Machado PI, Duarte M (2015) Crepuscular and nocturnal hawkmoths (Lepidoptera: Sphingidae) from a fragment of Atlantic rainforest in the state of São Paulo, southeastern Brazil. Fla Entomol 98:342–348CrossRefGoogle Scholar
  82. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  83. Wilson JF, Baker D, Cheney J, Cook M, Ellis M, Freestone R, Gardner D, Geen G, Hemming R, Hodgers D, Howarth S, Jupp A, Lowe N, Orridge S, Shaw M, Smith B, Turner A, Young H (2018) A role for artificial night-time lighting in long-term changes in populations of 100 widespread macro-moths in UK and Ireland: a citizen-science study. J Insect Conserv.  https://doi.org/10.1007/s10841-018-0052-1 CrossRefGoogle Scholar
  84. Wolda H (1983) “Long-term” stability of tropical insect populations. Res Popul Ecol 25(suppl 3):112–126CrossRefGoogle Scholar
  85. Wolfe DA, Champ MA, Flemer DA, Mearns AJ (1987) Long-term biological data sets: their role in research, monitoring, and management of estuarine and coastal marine systems. Estuaries 10:181–193CrossRefGoogle Scholar
  86. Wood SN (2003) Thin-plate regression splines. J R Stat Soc 65:95–114CrossRefGoogle Scholar
  87. Yela JL, Holyoak M (1997) Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environ Entomol 26:1283–1290CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Museu de ZoologiaUniversidade de São PauloSão PauloBrazil
  2. 2.Laboratório de Ecologia da Polinização e Interações – LEPI, Departamento de Botânica, Instituto de BiociênciasUniversidade Estadual Paulista “Júlio de Mesquita Filho”BotucatuBrazil

Personalised recommendations