Assessing the landscape functional connectivity using movement maps: a case study with endemic Azorean insects

Abstract

There is a vast body of literature aiming to predict, for a large number of taxa, the spatial distribution of suitable areas given the expected future changes of climatic conditions. However, such studies often overlook the role of landscape functional connectivity. This is particularly relevant for species with low vagility, as ground-dwelling insects, inhabiting areas with high human pressure due to habitat destruction and fragmentation, namely in the islands. In this study, we developed an individual-based model (IBM) that simulates individual movement according to landscape resistance and mortality probability, in order to derive the landscape movement map, and applied it to five endemic ground-dwelling insects of Terceira Island (Azores). We then confronted the movement maps of each species against the species distribution models previously developed for both current and future climatic conditions, quantifying the amount of important movement areas that are enclosed by the distribution polygons. We further sought to identify where habitat restoration would increase the overall connectivity among large habitat patches. Our results showed that, for both timeframes, the distribution models enclosed small amounts of areas predicted to be important for animal movement. Additionally, we predicted strong reductions (up to 94%) of these important areas for functional connectivity. We also identified areas in-between native forest of primary importance for restoration that may significantly increase the probability of persistence of our model species. We anticipate that this study will be useful to both conservation planners and ecologists seeking to understand species movement and dispersal both is islands and elsewhere.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of “least-cost” modelling as a functional landscape model. Landscape Urban Plan 64:233–247. https://doi.org/10.1016/S0169-2046(02)00242-6

    Article  Google Scholar 

  2. Albert CH, Rayfield B, Dumitru M, Gonzalez A (2017) Applying network theory to prioritize multi-species habitat networks that are robust to climate and land-use change. Conserv Biol. https://doi.org/10.1111/cobi.12943

    PubMed  Article  Google Scholar 

  3. Allen CH, Parrott L, Kyle C (2016) An individual-based modelling approach to estimate landscape connectivity for bighorn sheep (Ovis canadensis). PeerJ 4:e2001. https://doi.org/10.7717/peerj.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Arellano L, León-Cortés JL, Ovaskainen O (2008) Patterns of abundance and movement in relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico. Landscape Ecol 23:69–78. https://doi.org/10.1007/s10980-007-9165-8

    Article  Google Scholar 

  5. Avendaño-Mendoza C, Morón-Ríos A, Cano EB, León-Cortés J (2005) Dung beetle community (Coleoptera: Scarabaeidae: Scarabaeinae) in a tropical landscape at the Lachua Region, Guatemala. Biodivers Conserv 14:801–822. https://doi.org/10.1007/s10531-004-0651-x

    Article  Google Scholar 

  6. Azevedo EB (2014) Plano de gestão dos recursos hídrico das ilhas Terceira, Graciosa, Jorge S, Pico, Faial, Flores e Corvo - Clima e Hidrologia de superfície. Centro do Clima, Meteorogia e Mudanças Globais da Universidade dos Açores

  7. Azevedo EB, Reis FV (2016) Cenários climáticos para os Açores: Plano Regional das Alterações Climáticas (PRAC). Angra do Heroísmo, Açores

  8. Barton KA, Phillips BL, Morales JM, Travis JMJ (2009) The evolution of an “intelligent” dispersal strategy: biased, correlated random walks in patchy landscapes. Oikos 118:309–319. https://doi.org/10.1111/j.1600-0706.2008.16936.x

    Article  Google Scholar 

  9. Bellard C, Leclerc C, Courchamp F (2014) Impact of sea level rise on the 10 insular biodiversity hotspots. Global Ecol Biogeogr 23:203–212. https://doi.org/10.1111/geb.12093

    Article  Google Scholar 

  10. Borges PAV, Serrano AR, Quartau JA (2000) Ranking the Azorean natural forest reserves for conservation using their endemic arthropods. J Insect Conserv 4:129–147. https://doi.org/10.1023/A:1009629012205

    Article  Google Scholar 

  11. Borges PAV, Aguiar C, Amaral J et al (2005) Ranking protected areas in the Azores using standardised sampling of soil epigean arthropods. Biodivers Conserv 14:2029–2060. https://doi.org/10.1007/s10531-004-4283-y

    Article  Google Scholar 

  12. Borges PAV, Lobo JM, de Azevedo EB, Gaspar CS, Melo C, Nunes LV (2006) Invasibility and species richness of island endemic arthropods: a general model of endemic vs. exotic species. J Biogeogr 33:169–187. https://doi.org/10.1111/j.1365-2699.2005.01324.x

    Article  Google Scholar 

  13. Borges PAV, Vieira V (2010) List of arthropods (Arthropoda). In: Borges PAV et al (eds) A list of the terrestrial and marine biota from the Azores. Princípia, Cascais, pp 179–246

    Google Scholar 

  14. Borges PAV, Lamelas-López L, Amorim I et al (2017) Conservation status of the forest beetles (Insecta, Coleoptera) from Azores, Portugal. Biodivers Data J 5:e14557. https://doi.org/10.3897/BDJ.5.e14557

    Article  Google Scholar 

  15. Cardoso P, Aranda SC, Lobo JM, Dinis F, Gaspar C, Borges PAV (2009) A spatial scale assessment of habitat effects on arthropod communities of an oceanic island. Acta Oecol 35:590–597. https://doi.org/10.1016/j.actao.2009.05.005

    Article  Google Scholar 

  16. Cardoso P, Rigal F, Fattorini S, Terzopoulou S, Borges PAV (2013) Integrating landscape disturbance and indicator species in conservation studies. PLoS ONE 8:e63294. https://doi.org/10.1371/journal.pone.0063294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. https://doi.org/10.1126/science.1206432

    Article  PubMed  CAS  Google Scholar 

  18. Coulon A, Aben J, Palmer SCF, Stevens VM, Callens T, Strubbe D, Lens L, Matthysen E, Baguette M, Travis JMJ (2015) A stochastic movement simulator improves estimates of landscape connectivity. Ecology 96:2203–2213. https://doi.org/10.1890/14-1690.1

    Article  PubMed  CAS  Google Scholar 

  19. Courchamp F, Hoffmann BD, Russell JC, Leclerc C, Bellard C (2014) Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends Ecol Evol 29:127–130. https://doi.org/10.1016/j.tree.2014.01.001

    Article  PubMed  Google Scholar 

  20. DROTRH (2008) Carta de ocupação do solo da região Autónoma dos Açores - Projecto SUEMAC. Secretaria Regional do Ambiente, Direcção Regional do Ordenamento do território e dos Recursos Hídricos, Ponta Delgada

    Google Scholar 

  21. Elias RB, Gil A, Silva L, Fernández-Palacios J-M, Azevedo EB, Reis F (2016) Natural zonal vegetation of the Azores Islands: characterization and potential distribution. Phytocoenologia 46:107–123. https://doi.org/10.1127/phyto/2016/0132

    Article  Google Scholar 

  22. Eycott AE, Stewart GB, Buyung-Ali LM, Bowler DE, Watts K, Pullin AS (2012) A meta-analysis on the impact of different matrix structures on species movement rates. Landscape Ecol 27:1263–1278. https://doi.org/10.1007/s10980-012-9781-9

    Article  Google Scholar 

  23. Ferreira MT, Cardoso P, Borges PAV, Gabriel R, de Azevedo EB, Reis F, Araújo MB, Elias RB (2016) Effects of climate change on the distribution of indigenous species in oceanic islands (Azores). Clim Change 138:603–615. https://doi.org/10.1007/s10584-016-1754-6

    Article  CAS  Google Scholar 

  24. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16:265–280. https://doi.org/10.1111/j.1466-8238.2007.00287.x

    Article  Google Scholar 

  25. Florencio M, Rigal F, Borges PAV, Cardoso P, Santos AMC, Lobo JM (2016) The role of plant fidelity and land-use changes on island exotic and indigenous canopy spiders at local and regional scales. Biol Invasions 18:2309–2324. https://doi.org/10.1007/s10530-016-1162-x

    Article  Google Scholar 

  26. Gabriel R, Bates JW (2005) Bryophyte community composition and habitat specificity in the natural forests of Terceira, Azores. Plant Ecol 177:125–144. https://doi.org/10.1007/s11258-005-2243-6

    Article  Google Scholar 

  27. Garcia RA, Cabeza M, Rahbek C, Araujo MB (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344:1247579. https://doi.org/10.1126/science.1247579

    Article  PubMed  CAS  Google Scholar 

  28. Gaspar C, Gaston KJ, Borges PAV, Cardoso P (2011) Selection of priority areas for arthropod conservation in the Azores archipelago. J Insect Conserv 15:671–684. https://doi.org/10.1007/s10841-010-9365-4

    Article  Google Scholar 

  29. Gitay H, Suárez A, Watson RT (2002) Climate change and biodiversity. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  30. Gonçalves J, Dentinho T (2007) A spatial interaction model for agricultural uses. In: Koomen E, Stillwell J, Bakema A, Scholten HJ (eds) Modelling land-use change. Springer, Heidelberg, pp 133–144

    Google Scholar 

  31. Grimm V, Berger U, Bastiansen F et al (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

    Article  Google Scholar 

  32. Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Model 221:2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019

    Article  Google Scholar 

  33. Harter DEV, Irl SDH, Seo B, Steinbauer MJ, Gillespie R, Triantis KA, Fernández-Palacios J-M, Beierkuhnlein C (2015) Impacts of global climate change on the floras of oceanic islands: projections, implications and current knowledge. Perspect Plant Ecol 17:160–183. https://doi.org/10.1016/j.ppees.2015.01.003

    Article  Google Scholar 

  34. Jenkins CN, Van Houtan KS, Pimm SL, Sexton JO (2015) US protected lands mismatch biodiversity priorities. Proc Natl Acad Sci 112:5081–5086. https://doi.org/10.1073/pnas.1418034112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci 106:9322–9327. https://doi.org/10.1073/pnas.0810306106

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kleinmann JU, Wang M (2017) Modeling individual movement decisions of brown hare (Lepus europaeus) as a key concept for realistic spatial behavior and exposure: a population model for landscape-level risk assessment. Environ Toxicol Chem 36:2299–2307. https://doi.org/10.1002/etc.3760

    Article  PubMed  CAS  Google Scholar 

  37. Krosby M, Tewksbury J, Haddad NM, Hoekstra J (2010) Ecological connectivity for a changing climate. Conserv Biol 24:1686–1689. https://doi.org/10.1111/j.1523-1739.2010.01585.x

    Article  PubMed  Google Scholar 

  38. Lambin EF, Turner BL, Geist HJ et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269. https://doi.org/10.1016/S0959-3780(01)00007-3

    Article  Google Scholar 

  39. Le Gall M, Chaput-Bardy A, Husté A (2017) Context-dependent local movements of the blue-tailed damselfly, Ischnura elegans: effects of pond characteristics and the landscape matrix. J Insect Conserv 21:243–256. https://doi.org/10.1007/s10841-017-9971-5

    Article  Google Scholar 

  40. Machado A (2009) El Género Drouetius Méquignon, 1942 Stat. Prom., de las islas Azores (Coleoptera, Curculionidae, Entiminae). Graellsia 65:19–46

    Article  Google Scholar 

  41. Martin TG, Burgman MA, Fidler F, Kuhnert PM, Low-Choy S, Mcbride M, Mengersen K (2012) Eliciting expert knowledge in conservation science. Conserv Biol 26:29–38. https://doi.org/10.1111/j.1523-1739.2011.01806.x

    Article  PubMed  Google Scholar 

  42. Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089. https://doi.org/10.1111/j.1523-1739.2009.01264.x

    Article  PubMed  Google Scholar 

  43. Maxwell SL, Fuller RA, Brooks TM, Watson JEM (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143–145. https://doi.org/10.1038/536143a

    Article  PubMed  CAS  Google Scholar 

  44. McGuire JL, Lawler JJ, McRae BH, Nuñez TA, Theobald DM (2016) Achieving climate connectivity in a fragmented landscape. Proc Natl Acad Sci 113:7195–7200. https://doi.org/10.1073/pnas.1602817113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. McLane AJ, Semeniuk C, McDermid GJ, Marceau DJ (2011) The role of agent-based models in wildlife ecology and management. Ecol Model 222:1544–1556. https://doi.org/10.1016/j.ecolmodel.2011.01.020

    Article  Google Scholar 

  46. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. https://doi.org/10.1890/07-1861.1

    Article  PubMed  Google Scholar 

  47. Miranda P, Valente MA, Tomé AR, Trigo R, Coelho MFES., Aguiar A, Azevedo EB (2006) O clima de Portugal nos Séculos XX e XXI. In: Santos FD, Miranda P (eds) Alterações climáticas em Portugal: Cenários, impactos e medidas de adaptação. Gradiva, Lisbon, pp 45–113

    Google Scholar 

  48. Nardi G, Mico E (2010) Alestrus dolosus. The IUCN red list of threatened species 2010: e.T157633A5113198. https://doi.org/10.2305/IUCN.UK.2010-1.RLTS.T157633A5113198.en

  49. Niebuhr BBS, Wosniack ME, Santos MC, Raposo EP, Viswanathan GM, da Luz MGE, Pie MR (2015) Survival in patchy landscapes: the interplay between dispersal, habitat loss and fragmentation. Sci Rep 5:11898. https://doi.org/10.1038/srep11898

    Article  PubMed  PubMed Central  Google Scholar 

  50. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  51. Patiño J, Mateo RG, Zanatta F et al (2016) Climate threat on the Macaronesian endemic bryophyte flora. Sci Rep 6:29156. https://doi.org/10.1038/srep29156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19:1205–1223. https://doi.org/10.1007/s10531-009-9750-z

    Article  Google Scholar 

  53. QGIS Development team (2016) QGIS geographic information system. Open source geospatial foundation project. QGIS development team. Available from http://www.qgis.org/

  54. Quartau JA, Borges P (2003) A new species of the genus Aphrodes curtis from the Azores (Hemiptera, Cicadellidae). Bocagiana 213:1–11

    Google Scholar 

  55. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from https://www.r-project.org/

  56. Railsback SF, Grimm V (2011) Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press, Princeton

    Google Scholar 

  57. Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  58. Roslin T, Avomaa T, Leonard M, Luoto M, Ovaskainen O (2009) Some like it hot: microclimatic variation affects the abundance and movements of a critically endangered dung beetle. Insect Conserv Diver 2:232–241. https://doi.org/10.1111/j.1752-4598.2009.00054.x

    Article  Google Scholar 

  59. Sala O, Chapin FS III, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770

    Article  PubMed  CAS  Google Scholar 

  60. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571. https://doi.org/10.2307/3544927

    Article  Google Scholar 

  61. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B: Biol Sci 270:467–473. https://doi.org/10.1098/rspb.2002.2246

    Article  CAS  Google Scholar 

  62. Triantis KA, Borges PAV, Ladle RJ et al (2010) Extinction debt on oceanic islands. Ecography 33:285–294. https://doi.org/10.1111/j.1600-0587.2010.06203.x

    Article  Google Scholar 

  63. USGS (2015) United States geological survey. http://earthexplorer.usgs.gov/. Accessed Nov 1 2015

  64. van Etten J (2017) R package gdistance: distances and routes on geographical grids. J Stat Softw 76. https://doi.org/10.18637/jss.v076.i13

  65. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  66. Wetzel FT, Beissmann H, Penn DJ, Jetz W (2013) Vulnerability of terrestrial island vertebrates to projected sea-level rise. Glob Change Biol 19:2058–2070. https://doi.org/10.1111/gcb.12185

    Article  Google Scholar 

  67. Wilensky U (1999) NetLogo. Center for connected learning and computer-based modeling, Northwestern University, Evanston: http://ccl.northwestern.edu/netlogo/

  68. Williams JC, ReVelle CS, Levin SA (2005) Spatial attributes and reserve design models: a review. Environ Model Assess 10:163–181. https://doi.org/10.1007/s10666-005-9007-5

    Article  Google Scholar 

  69. Youngquist MB, Boone MD (2014) Movement of amphibians through agricultural landscapes: the role of habitat on edge permeability. Biol Conserv 175:148–155. https://doi.org/10.1016/j.biocon.2014.04.028

    Article  Google Scholar 

Download references

Acknowledgements

A special thanks to Pedro Neves and David Avelar, for facilitating the computational resources that significantly reduced the simulation time; Luís Dias and Rita Godinho, for all the help and GIS support; and Luís Borda de Água, Mário Boieiro and Carla Rego for all the discussion and helpful comments and inputs. Data on species distributions was gathered based on the project ATLANTISMAR—“Mapping coastal and marine biodiversity of the Azores” (Ref: M2.1.2/I/027/2011). We also thank the anonymous reviewers, whose comments helped improving the quality of our manuscript. 

Funding

BAA was partially founded by Fundação para a Ciência e Tecnologia (FCT) Unit funding (Ref: UID/BIA/00329/2013). PAVB, EBA and RBE were funded by the project “Implications of climate change for Azorean Biodiversity—IMPACTBIO” [M2.1.2/I/005/2011]. FA was funded by Infraestruturas de Portugal Biodiversity Chair and Fundação para a Ciência e Tecnologia (FCT, SFRH/BPD/115968/2016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruno A. Aparício.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aparício, B.A., Cascalho, J., Cruz, M.J. et al. Assessing the landscape functional connectivity using movement maps: a case study with endemic Azorean insects. J Insect Conserv 22, 257–265 (2018). https://doi.org/10.1007/s10841-018-0059-7

Download citation

Keywords

  • Climate change adaptation
  • Landscape management
  • Individual-based model
  • Island ecology
  • Azores