Journal of Insect Conservation

, Volume 21, Issue 2, pp 357–366 | Cite as

Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae)

  • Paolo Biella
  • Giuseppe Bogliani
  • Maurizio Cornalba
  • Aulo Manino
  • Johann Neumayer
  • Marco Porporato
  • Pierre Rasmont
  • Pietro Milanesi


Climate change is threatening species and habitats. Altitudinal shifts uphill and negative population trends are commonly observed in altitude-related taxa. The bumblebee Bombus alpinus (Linnaeus, 1758) has a disjoint distribution restricted to Fennoscandia and the Alps, and is considered threatened. We studied the ecology and distribution of B. alpinus in the Alps, where the endemic subspecies Bombus alpinus helleri Dalla Torre 1882 is found, as a case-model because of its rarity, habitat, and mutual dependence with the ecosystem for pollination and resources. We developed species distribution models including both climatic and habitat variables to obtain the surface suitable for this subspecies and quantified its protected portion. Our analyses indicate that this bumblebee is restricted to the upper altitudes and has a narrow niche mainly related to the presence of glaciers, the cool temperature, a low temperature variation, and a specific range of precipitation. A strong altitudinal shift is also taking place probably due to climate change. After years of no changes in altitudinal distribution, its lowest altitudinal limit has moved up 479 m since the year 1984, while its upper altitudinal limit has remained unchanged. Over half of the suitable area in the Alps is included within protected areas, but conservation has not been planned yet. However, rare species with narrow niche, such as B. alpinus, are highly threatened by climate change. Potential short-term mitigation actions are discussed, including exchange of males between locations and integral protection of prairies in the vicinity of glaciers.


Climate change Specialist Rare species Species distribution modelling Altitudinal shift Conservation 



We thank K. Horvath and R. West for the linguistic review. We thank the organizations and people that shared data for the occurrence database (Supplementary Material). In particular, we thank the Info Fauna—CSCF (Centre Suisse de Cartographie de la Faune), Michele Abderhalden and their data-providers. We thank Maurizio Mei, Gilles Mahé, Silas Bossert, and Bernhard Schneller for collaboration. Some data from JN are derived from projects granted by the Hohe Tauern National Park and the Grossglockner-Hochalpenstraßen AG (Österreich). PB thanks the Stelvio National Park (Italy) for sampling authorizations. PB is supported by the Czech Science Foundation (GAČR GP14-10035P) and by the University of South Bohemia (Grant GA JU 152/2016/P). PM thanks the University of Pavia for financial support.

Supplementary material

10841_2017_9983_MOESM1_ESM.pdf (18 kb)
Supplementary material 1 (PDF 17 KB)
10841_2017_9983_MOESM2_ESM.docx (218 kb)
Supplementary material 2 (DOCX 217 KB)


  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x CrossRefGoogle Scholar
  2. Amiet F (1996) Insecta helvetica. A, Fauna: 12. Hymenoptera. Apidae.-T. 1. Allgemeiner Teil, Gattungsschlüssel, Gattungen Apis, Bombus und Psithyrus. Schweizerische Entomologische Gesellschaft, Musée d’histoire naturelleGoogle Scholar
  3. Anthelme F, Cavieres LA, Dangles O (2014) Facilitation among plants in alpine environments in the face of climate change. Front Plant Sci. doi: 10.3389/fpls.2014.00387 PubMedPubMedCentralGoogle Scholar
  4. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. doi: 10.1016/j.tree.2006.09.010 CrossRefPubMedGoogle Scholar
  5. Ashton S, Gutiérrez D, Wilson RJ (2009) Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change. Ecol Entomol 34:437–446. doi: 10.1111/j.1365-2311.2008.01068.x CrossRefGoogle Scholar
  6. Barcella M, Filipponi F, Assini S (2016) A simple model to support grazing management by direct field observation. Agric Ecosyst Environ. doi: 10.1016/j.agee.2016.04.027 Google Scholar
  7. Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251. doi: 10.1023/A:1005380714349 CrossRefGoogle Scholar
  8. Biella P (2015) Bombus (Alpinobombus) alpinus in the Italian Central Alps (Hymenoptera: Apidae: Bombinae). Il Nat Valtellin 25:69–72Google Scholar
  9. Bogliani G, Brangi A (1990) Abrasion of the status badge in the male Italian Sparrow Passer italiae. Bird Study 37:195–198. doi: 10.1080/00063659009477057 CrossRefGoogle Scholar
  10. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300. doi: 10.1016/S0304-3800(02)00200-4 CrossRefGoogle Scholar
  11. Brambilla M, Pedrini P, Rolando A, Chamberlain DE (2016) Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J Biogeogr. doi: 10.1111/jbi.12796 Google Scholar
  12. Breiman L (2001) Random forests. Mach Learn 45:5–32. doi: 10.1023/A:1010933404324 CrossRefGoogle Scholar
  13. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Taylor & Francis, ArmonkGoogle Scholar
  14. Breiner FT, Guisan A, Bergamini A, Nobis MP (2015) Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol Evol 6:1210–1218. doi: 10.1111/2041-210X.12403 CrossRefGoogle Scholar
  15. Calenge C, Dufour AB, Maillard D (2005) K-select analysis: a new method to analyse habitat selection in radio-tracking studies. Ecol Model 186:143–153. doi: 10.1016/j.ecolmodel.2004.12.005 CrossRefGoogle Scholar
  16. Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci 108:662–667. doi: 10.1073/pnas.1014743108 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cannone N, Pignatti S (2014) Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim Change 123:201–214. doi: 10.1007/s10584-014-1065-8 CrossRefGoogle Scholar
  18. Casey LM, Rebelo H, Rotheray E, Goulson D (2015) Evidence for habitat and climatic specializations driving the long-term distribution trends of UK and Irish bumblebees. Divers Distrib 21:864–875. doi: 10.1111/ddi.12344 CrossRefGoogle Scholar
  19. De Beaumont J (1958) Les Hyménoptères aculéates du Parc national suisse et des régions limitrophes. Drueck Lüdin AG, LiestalGoogle Scholar
  20. De Marco P, Diniz-Filho JAF, Bini LM (2008) Spatial analysis improves species distribution modelling during range expansion. Biol Lett 4:577–580. doi: 10.1098/rsbl.2008.0210 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dormann CF, McPherson J, Araújo MB et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628. doi: 10.1111/j.2007.0906-7590.05171.x CrossRefGoogle Scholar
  22. Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77. doi: 10.1111/j.1600-0587.2008.05505.x CrossRefGoogle Scholar
  23. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342. doi: 10.1111/j.2041-210X.2010.00036.x CrossRefGoogle Scholar
  24. Fawcett T (2004) ROC graphs: notes and practical considerations for researchers. Mach Learn 31:1–38Google Scholar
  25. Fleischner TL (1994) Ecological costs of livestock grazing in western North America. Conserv Biol 8:629–644CrossRefGoogle Scholar
  26. Flousek J, Telenský T, Hanzelka J, Reif J (2015) Population trends of Central European montane birds provide evidence for adverse impacts of climate change on high-altitude species. PLoS ONE 10:e0139465. doi: 10.1371/journal.pone.0139465 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122. doi: 10.1371/journal.pone.0097122 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Thousand Oaks, SageGoogle Scholar
  29. Francis JS, Muth F, Papaj DR, Leonard AS (2016) Nutritional complexity and the structure of bee foraging bouts. Behav Ecol 27:903–911CrossRefGoogle Scholar
  30. Franzén M, Molander M (2011) How threatened are alpine environments? A cross taxonomic study. Biodivers Conserv 21:517–526. doi: 10.1007/s10531-011-0197-7 CrossRefGoogle Scholar
  31. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67. doi: 10.1214/aos/1176347963 CrossRefGoogle Scholar
  32. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRefGoogle Scholar
  33. Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27:258–265Google Scholar
  34. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  35. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270. doi: 10.1080/01621459.1994.10476866 CrossRefGoogle Scholar
  36. IPCC, Intergovernmental Panel on Climate Change (2014) Climate change 2013: the physical science basis: working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  37. Jha S (2015) Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol 24:993–1006. doi: 10.1111/mec.13090 CrossRefPubMedGoogle Scholar
  38. Jiménez-Alfaro B, Gavilán RG, Escudero A et al (2014) Decline of dry grassland specialists in Mediterranean high-mountain communities influenced by recent climate warming. J Veg Sci 25:1394–1404. doi: 10.1111/jvs.12198 CrossRefGoogle Scholar
  39. Kerr JT, Pindar A, Galpern P et al (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180. doi: 10.1126/science.aaa7031 CrossRefPubMedGoogle Scholar
  40. Ko C-Y, Root TL, Lee P-F (2011) Movement distances enhance validity of predictive models. Ecol Model 222:947–954. doi: 10.1016/j.ecolmodel.2010.12.001 CrossRefGoogle Scholar
  41. Lázaro A, Tscheulin T, Devalez J et al (2016) Moderation is best: effects of grazing intensity on plant–flower visitor networks in Mediterranean communities. Ecol Appl 26:796–807. doi: 10.1890/15-0202 CrossRefPubMedGoogle Scholar
  42. Lepais O, Darvill B, O’Connor S et al (2010) Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol Ecol 19:819–831. doi: 10.1111/j.1365-294X.2009.04500.x CrossRefPubMedGoogle Scholar
  43. Løken A (1973) Studies on scandinavian bumble bees (Hymenoptera, Apidae). Nor Entomol Tidsskr 20:1–218Google Scholar
  44. Manino A, Patetta A, Porporato M et al (2007) Bumblebee (Bombus Latreille, 1802) distribution in high mountains and global warming. Redia 90:125–129Google Scholar
  45. Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69CrossRefGoogle Scholar
  46. Martinet B, Lecocq T, Smet J, Rasmont P (2015) A protocol to assess insect resistance to heat waves, applied to bumblebees (Bombus Latreille, 1802). PLoS ONE 10:e0118591. doi: 10.1371/journal.pone.0118591 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Martins AC, Silva DP, De Marco P, Melo GA (2014) Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. J Insect Conserv 19:33–43. doi: 10.1007/s10841-014-9740-7 CrossRefGoogle Scholar
  48. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  49. Milanesi P, Giraudo L, Morand A et al (2016) Does habitat use and ecological niche shift over the lifespan of wild species? Patterns of the bearded vulture population in the Western Alps. Ecol Res 31:229–238. doi: 10.1007/s11284-015-1329-4 CrossRefGoogle Scholar
  50. Monasterio C, Salvador A, Iraeta P, Díaz JA (2009) The effects of thermal biology and refuge availability on the restricted distribution of an alpine lizard. J Biogeogr 36:1673–1684. doi: 10.1111/j.1365-2699.2009.02113.x CrossRefGoogle Scholar
  51. Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071. doi: 10.1002/sim.1545 CrossRefPubMedGoogle Scholar
  52. Neumayer J, Paulus HF (1999) Ökologie alpiner Hummelgemeinschaften: Blütenbesuch, Ressourcenaufteilung und Energiehaushalt; Untersuchungen in den Ostalpen Österreichs. Biologiezentrum des OÖ Landesmuseums, LinzGoogle Scholar
  53. Nieto A, Roberts SP, Kemp J et al (2014) European red list of bees. Publication Office of the European Union, LuxembourgGoogle Scholar
  54. Ohlemüller R, Anderson BJ, Araújo MB et al (2008) The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol Lett 4:568–572. doi: 10.1098/rsbl.2008.0097 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ollerton J, Erenler H, Edwards M, Crockett R (2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346:1360–1362. doi: 10.1126/science.1257259 CrossRefPubMedGoogle Scholar
  56. Park MG, Raguso RA, Losey JE, Danforth BN (2015) Per-visit pollinator performance and regional importance of wild Bombus and Andrena (Melandrena) compared to the managed honey bee in New York apple orchards. Apidologie 47:145–160. doi: 10.1007/s13592-015-0383-9 CrossRefGoogle Scholar
  57. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi: 10.1038/nature01286 CrossRefPubMedGoogle Scholar
  58. Pepin NC, Seidel DJ (2005) A global comparison of surface and free-air temperatures at high elevations. J Geophys Res. doi: 10.1029/2004JD005047 Google Scholar
  59. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  60. Pittioni B (1942) Die boreoalpinen Hummeln und Schmarotzerhummeln (Hymen., Apidae, Bombinae). I. Mitteilungen Aus Den K Naturwissenschaftlichen Instituten Sofia 15:155–218Google Scholar
  61. Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol 6:1126–1136CrossRefGoogle Scholar
  62. R Core Team (2016) R: language and environment for statistical computing. R Foundation for Statistical Computing, 2005, ViennaGoogle Scholar
  63. Rasmont P, Franzen M, Lecocq T et al (2015a) Climatic risk and distribution atlas of European bumblebees. BioRisk 10:1–236. doi: 10.3897/biorisk.10.4749 CrossRefGoogle Scholar
  64. Rasmont P, Roberts SM, Cederberg B et al (2015b) Bombus alpinus: the IUCN Red list of threatened species. Accessed 28 Apr 2016
  65. Ripley BD (2007) Pattern recognition and neural networks. Cambridge University Press, CambridgeGoogle Scholar
  66. Rossaro B, Montagna M, Lencioni V (2016) Environmental traits affect chironomid communities in glacial areas of the Southern Alps: evidence from a long-lasting case study. Insect Conserv Divers 9:192–201. doi: 10.1111/icad.12157 CrossRefGoogle Scholar
  67. Rundlöf M, Andersson GKS, Bommarco R et al (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80. doi: 10.1038/nature14420 CrossRefPubMedGoogle Scholar
  68. Schedl W (1982) Über aculeate Hautflügler der zentralen Ötztaler Alpen (Tirol, Österreich):(Insecta, Hymenoptera). Ber Nat-Med Ver Innsbr 69:95–117Google Scholar
  69. Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568. doi: 10.1111/j.1365-2699.2004.01076.x CrossRefGoogle Scholar
  70. Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008) Climate change, elevational range shifts, and bird extinctions. Conserv Biol 22:140–150. doi: 10.1111/j.1523-1739.2007.00852.x CrossRefPubMedGoogle Scholar
  71. Seo C, Thorne JH, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biol Lett 5:39–43. doi: 10.1098/rsbl.2008.0476 CrossRefPubMedGoogle Scholar
  72. Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357. doi: 10.1111/j.1523-1739.2006.00524.x CrossRefPubMedGoogle Scholar
  73. Stenström M, Bergman P (1998) Bumblebees at an alpine site in Northern Sweden: temporal development, population size, and plant utilization. Ecography 21:306–316CrossRefGoogle Scholar
  74. Stolar J, Nielsen SE (2015) Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers Distrib 21:595–608. doi: 10.1111/ddi.12279 CrossRefGoogle Scholar
  75. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRefPubMedGoogle Scholar
  76. Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148. doi: 10.1038/nature02121 CrossRefPubMedGoogle Scholar
  77. Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362. doi: 10.1046/j.1365-2486.2003.00666.x CrossRefGoogle Scholar
  78. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027. doi: 10.1111/j.1365-2486.2004.00859.x CrossRefGoogle Scholar
  79. Thuiller W, Lavorel S, Araújo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357. doi: 10.1111/j.1466-822X.2005.00162.x CrossRefGoogle Scholar
  80. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373. doi: 10.1111/j.1600-0587.2008.05742.x CrossRefGoogle Scholar
  81. Thuiller W, Georges D, Engler R, Breiner F (2016) biomod2: ensemble platform for species distribution modeling. R Core Team.
  82. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947. doi: 10.1111/j.1365-2745.2005.01023.x CrossRefGoogle Scholar
  83. Viterbi R, Cerrato C, Bassano B et al (2013) Patterns of biodiversity in the northwestern Italian Alps: a multi-taxa approach. Community Ecol 14:18–30. doi: 10.1556/ComEc.14.2013.1.3 CrossRefGoogle Scholar
  84. Wu G-L, Ren G-H, Wang D et al (2013) Above- and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China. J Hydrol 476:120–127. doi: 10.1016/j.jhydrol.2012.10.031 CrossRefGoogle Scholar
  85. Zemp M, Frey H, Gärtner-Roer I et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762. doi: 10.3189/2015JoG15J017 CrossRefGoogle Scholar
  86. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Zoology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i.Institute of EntomologyČeské BudějoviceCzech Republic
  3. 3.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
  4. 4.Department of MathematicsUniversity of PaviaPaviaItaly
  5. 5.Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliascoItaly
  6. 6.ElixhausenAustria
  7. 7.Laboratory of Zoology, Research Institute of BiosciencesUniversity of MonsMonsBelgium
  8. 8.Swiss Ornithological InstituteSempachSwitzerland

Personalised recommendations