Skip to main content

Advertisement

Log in

Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The degradation and replacement of native ecosystems affects both their taxonomic and functional biodiversity. However, native species may find a gradient of habitat suitability in different land uses within a region. The aim of this study was to evaluate the effect of land use on the taxonomic and functional diversity of dung beetle assemblages in the southern Atlantic forest of Argentina. Dung beetles were sampled in both the native forest (control) and different land uses (Pine and Yerba mate plantations and cattle pastures) during the 2014 summer, using pitfall traps baited with human feces and rotten meat. Samplings were taken from 20 different sites, with five replicates of each land use and the native forest (100 pitfall traps in total). A total of 1699 beetles of 27 species were captured. Canthon quinquemaculatus, Canthon conformis and Dichotomius sericeus were the most abundant species. Cattle pastures were the land use most negatively affected in their taxonomic and functional diversity, particularly large paracoprid dung beetles. Pine plantations maintained their taxonomic and functional diversity in relation to the native forest and Yerba mate plantations showed, in general, an intermediate situation. Microclimatic conditions (average temperature and humidity and maximum temperature) were correlated with functional diversity (the proportion of large paracoprid dung beetles decreased with increasing temperature) and are probably good predictors to explain the observed patterns of functional diversity of dung beetles. The development of sustainable production systems that preserve the native biodiversity requires the conservation of key components from the ecological niche of native species, especially microclimatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida SSP, Louzada JNC (2009) Estrutura da comunidade de Scarabaeinae (Scarabaeidae: Coleoptera) em fitofisionomias do Cerrado e sua importância para a conservação. Neotrop Entomol 38:32–43

    Article  Google Scholar 

  • Andresen E (2002) Dung beetles in a Central Amazonian rainforest and their ecological role as secondary seed dispersers. Ecol Entomol 27:257–270

    Article  Google Scholar 

  • Arellano L, León-Cortés J, Halffter G (2008) Response of dung beetle assemblages to landscape structure in remnant natural and modified habitats in southern Mexico. Insect Conserv Divers 1:253–262

    Article  Google Scholar 

  • Audino L, Louzada J, Comita L (2014) Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity? Biol Conserv 169:248–257

    Article  Google Scholar 

  • Bardgett R, Wardle D (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford series in ecology and evolution. Oxford university press, Oxford, p 301

    Google Scholar 

  • Barlow J, Gardner TA, Araujo IS et al. (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci USA 104:18555–18560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on dung beetle functional diversity. PLoS One 6:e17976

    Article  PubMed  PubMed Central  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19(1):134–143

  • Batalha MA, Cianciaruso MV and Motta-Junior JC (2010) Consequences of simulated loss of open cerrado areas to bird functional diversity. Nat Conservação 8:34–40

    Article  Google Scholar 

  • Braga RF, Korasaki V, Audino LD, Louzada J (2012) Are dung beetles driving dung-fly abundance in traditional agriculture areas in Amazon? Ecosystems 15:1173–1181

    Article  Google Scholar 

  • Campos R, Hernández M (2015) Changes in the dynamics of functional groups in communities of dung beetles in Atlantic forest fragments adjacent to transgenic maize crops. Ecol Indic 49:216–227

    Article  Google Scholar 

  • Casanoves F, Pla L, Di Rienzo JA, Díaz S (2010) FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol Evol 2:233–237

    Article  Google Scholar 

  • Casanoves F, Pla L, Di Rienzo JA (2011) Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos, 1, 384. CATIE, Turrialba

    Google Scholar 

  • De Deyn G, Van Der Putten W (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633

    Article  PubMed  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013) InfoStat versión 2013. Grupo InfoStat, FCA. Universidad Nacional de Córdoba, Córdoba. doi:10.1111/j.2041-210X.2010.00082.x

    Google Scholar 

  • Duraes R, Marins W, Vaz-De-Mello F (2005) Dung beetle (Coleoptera: Scarabaeidae) assemblages across a natural forest-cerrado ecotone in Minas Gerais, Brazil. Neotrop Entomol 34:721–731

    Article  Google Scholar 

  • Filgueiras B, Tabarelli M, Leal I, Vaz-De-Mello F, Iannuzzi L (2015) Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land uses and fragmentation-related effects. Ecol Indic 55:65–73

    Article  Google Scholar 

  • Filloy J, Zurita GA, Corbelli J, Bellocq MI (2010) On the similarity among bird communities: testing the influence of distance and land use. Acta Oecol 36:333–338

    Article  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA, Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:512–582

    Article  Google Scholar 

  • Giraldo C, Escobar F, Chara J, Calle Z (2011) The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv Divers 4:115–122

    Article  Google Scholar 

  • Gómez-Cifuentes A, Gimenez V, Munevar A, Zurita GA (2015) Estructura y composición de las comunidades de escarabajos estercoleros (Scarabaeidae: Scarabaeinae) en diferentes sistemas ganaderos del bosque Atlántico de Argentina. Entomol Mex 2:588–594

    Google Scholar 

  • Halffter G, Favila E, Halffter V (1992) A comparative study of the structure of the scarab guild in Mexican tropical rain forests and derived ecosystems. Folia Entomol Mex 84:131–156

    Google Scholar 

  • Izquierdo AE, De Angelo CD, Aide TM (2008) Thirty years of human demography and land-use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecol Soc 13:3

    Article  Google Scholar 

  • Korasaki V, Lopes J, Brown GG, Louzada J (2012) Using dung beetles to evaluate the effects of urbanization on Atlantic forest biodiversity. Insect Sci 20:343–406

    Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Larsen TH, Williams NM, Kremer C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547

    Article  PubMed  Google Scholar 

  • Larsen TH, Lopera A, Forsyth A (2008) Understanding trait-dependent community disassembly: dung beetles, density functions and forest fragmentation. Conserv Biol 22:1288–1298

    Article  PubMed  Google Scholar 

  • Lumaret JP, Galante E, Lumbreras C, Mena J, Bertrand M, Bernal JL, Cooper JF, Kadiri N, Crowe D (1993) Field effects of ivermectin residues on dung beetles. J Appl Ecol 30:428–436

    Article  CAS  Google Scholar 

  • Manning P, Slade E, Beynon S, Owen L (2016) Functionally rich dung beetle assemblages are required to provide multiple ecosystem services. Agric Ecosyst Environ 218:87–94

    Article  Google Scholar 

  • Menegaz P, Arellano L, Medina MIM, Lopez S (2015) Response of the copro-necrophagous beetle (Coleoptera: Scarabaeinae) assemblage to a range of soil characteristics and livestock management in a tropical landscape. J Insect Conserv 19:947–960

    Article  Google Scholar 

  • Moreira FMS, Nobrega RSA, Jesus EC, Ferreira DF, Perez DV (2009) Differentiation in the fertility of inceptisols as related to use in the upper Solimoes river region, western Amazon. Sci Total Environ 408:349–355

    Article  PubMed  Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent YJ (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Neita JC, Escobar F (2012) The potential value of agroforestry to dung beetle diversity in the wet tropical forests of the Pacific lowlands of Colombia. Agrofor Syst 85:121–131

    Article  Google Scholar 

  • Nervo B, Tocco C, Caprio E, Palestrini C, Rolando A (2014) The effects of body mass on dung removal efficiency in dung beetles. PLoS One 9:e107699

    Article  PubMed  PubMed Central  Google Scholar 

  • Nichols E, Larsen T, Spector S, Davis AL, Escobar F, Favila M, Vulinec YK (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19

    Article  Google Scholar 

  • Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME, Network TSR (2008) Ecological functions and ecosystems services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474

    Article  Google Scholar 

  • Oliveira-Filho AT, Fontes LAM (2000) Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Article  Google Scholar 

  • Peyras M, Vespa N, Bellocq M, Zurita G (2012) Quantifying edge effects: the role of habitat contrast and species specialization. J Insect Conserv 17:807–820

    Article  Google Scholar 

  • Pla L, Casanoves F, Di Rienzo J (2012) Quantifying functional diversity. Springer briefs in environmental science, Springer, Dordrecht, 2191–5555

    Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Rodrigues M, Uchoa M, Ide S (2013) Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Braz J Biol 73:211–200

    Article  CAS  PubMed  Google Scholar 

  • Salomão R, Iannuzzi L (2015) Dung beetle (Coleoptera, Scarabaeidae) assemblage of a highly fragmented landscape of Atlantic forest: from small to the largest fragments of northeastern Brazilian region. Rev Bras Entomol 59:126–131

    Article  Google Scholar 

  • Sánchez-de-Jesús H, Arroyo-Rodríguez V, Andresen E, Escobar F (2015) Forest Loss and matrix composition are the major drivers shaping dung beetle assemblages in a fragmented rainforest. Landsc Ecol 31:843–854

    Article  Google Scholar 

  • Scheffler PY (2005) Dung beetle (Coleoptera: Scarabaeidae) diversity and community structure across three disturbance regimes in eastern Amazonia. J Trop Ecol 21:9–19

    Article  Google Scholar 

  • Shahabuddin, Hidayat P, Manuwoto S, Noerdjito WA, Tscharntke T, Schulze CH (2010) Diversity and body size of dung beetles attracted to different dung types along a tropical land-use gradient in Sulawesi, Indonesia. J Trop Ecol 26:53–65

    Article  Google Scholar 

  • Simmons L, Ridsdill-Smith J (2011) Ecology and evolution of dung beetles. Blackwell Publishing Ltd, Hoboken

    Book  Google Scholar 

  • Slade E, Mann D, Villanueva J, Lewis O (2007) Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J Anim Ecol 76:1094–1104

    Article  PubMed  Google Scholar 

  • Spector S, Ayzama S (2003) Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian neotropical forest-savanna ecotone. Biotropica 35:394–404

    Google Scholar 

  • Tilman D (2001) Functional diversity. Encyclopedia Biodivers 3(1):109–120

  • Vaz-De-Mello FZ, Edmonds WD, Ocampo FC, Schoolmeesters P (2011) A multilingual key to the genera and subgenera of the subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae). Zootaxa 73:1–73

    Google Scholar 

  • Verdú JR, Arellano L, Numa C (2006) Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J Insect Physiol 52:854–860

    Article  PubMed  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Waltert M, Bobo KS, Kaupa S, Montoya ML, Nsanyi MS, Fermon H (2011) Assessing conservation values: biodiversity and endemicity in tropical land use systems. PLoS One. doi:10.1371/journal.pone.0016238

    PubMed  PubMed Central  Google Scholar 

  • Yoshihara Y, Sato S (2015) The relationship between dung beetle species richness and ecosystem functioning. Appl Soil Ecol 88:21–25

  • Zurita GA, Bellocq MI (2012) Bird assemblages in anthropogenic habitats: identifying a suitability gradient for native species in the Atlantic forest. Biotropica 44:412–419

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Fernando Vaz-de-Mello and Jose Ramón Verdú for helping us to examine the taxonomic component in the identification of dung beetles. Financial support was provided by the CONICET, the UCAR-MAGyP (BIO 23 and PIA 10105) and the ANPCyT (PICT-PRH 2702). The Misiones Ministry of Ecology provided the necessary permissions for the collection of dung beetles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Gómez-Cifuentes.

Appendix 1

Appendix 1

See Table 5.

Site

Location

Latitude

Longitude

Area (ha)

Forest

Gobernador Lanusse

25°59′34.47″S

54°18′5.37″W

16

Forest

Esperanza Centro

25°59′28.10″S

54°30′19.25″W

10

Forest

Esperanza Centro

26°1′8.56″S

54°30′42.93″W

13

Forest

Santiago de Liniers

26°21′37.83″S

54°23′24.19″W

10

Forest

Montecarlo

26°36′56.93″S

54°41′43.40″W

5

Pine

Esperanza Centro

25°59′49.77″S

54°30′18.63″W

17

Pine

Gobernador Lanusse

25°58′30.07″S

54°17′58.32″W

10

Pine

Eldorado

26°25′14.25″S

54°36′51.85″W

4

Pine

Santiago de Liniers

26°20′38.65″S

54°21′26.72″W

8

Yerba mate

Gobernador Lanusse

25°59′30.13″S

54°18′19.53″W

6

Yerba mate

Esperanza Centro

25°59′36.39″S

54°30′19.20″W

4

Yerba mate

Santiago de Liniers

26°21′44.26″S

54°23′33.46″W

5

Yerba mate

Montecarlo

26°36′27.46″S

54°41′46.19″W

6

Yerba mate

Esperanza Centro

25°59′26.50″S

54°29′31.61″W

6

Pasture

Gobernador Lanusse

25°59′39.34″S

54°18′19.64″W

17

Pasture

Gobernador Lanusse

25°58′16.55″S

54°17′24.26″W

10

Pasture

Esperanza Centro

26°0′31.89″S

54°30′24.50″W

9

Pasture

Santiago de Liniers

26°20′37.29″S

54°21′35.58″W

4

Pasture

Montecarlo

26°36′46.00″S

54°41′24.81″W

5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Cifuentes, A., Munevar, A., Gimenez, V.C. et al. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J Insect Conserv 21, 147–156 (2017). https://doi.org/10.1007/s10841-017-9964-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-9964-4

Keywords

Navigation