Journal of Insect Conservation

, Volume 21, Issue 1, pp 129–136 | Cite as

Larval habitat preferences of a threatened butterfly species in heavy-metal grasslands

ORIGINAL PAPER

Abstract

Understanding the factors that determine habitat quality is of vital importance in ensuring appropriate habitat management. Here we used the Niobe fritillary (Argynnis niobe) as a study system to analyse the larval habitat preferences in a small network of heavy-metal grasslands in western Germany. The data were compared with the results of a previous study in coastal dune grasslands of the German North Sea. Based on this knowledge, we give management recommendations for the conservation of this threatened species. The key factors for the survival of A. niobe in heavy-metal grasslands were (i) open vegetation with a warm microclimate and (ii) sufficient host plants for the larvae. This reflects similar results from the previous study in coastal grey dune grasslands. However, in the heavy-metal grasslands, physiological stress generally slows down succession and favours the fritillary’s host plant, the metallophyte Viola calaminaria. As a result, the cover of the host plant was nearly twice as high in heavy-metal grasslands compared to the dune grasslands. Heavy-metal grasslands are of great significance for the conservation of A. niobe and overall butterfly diversity. Usually, the speed of succession in heavy-metal grasslands is slow and, hence, sites with high heavy-metal concentrations are characterised by relatively stable plant composition and vegetation structure. However, on soils with low heavy-metal content a loss of habitats of A. niobe and associated species of conservation concern may occur without management. On those sites sheep grazing seems to be an appropriate way to keep the habitats open and rich in violets.

Keywords

Argynnis niobe Coastal dune Conservation management Host plant Microclimate Vegetation structure 

Notes

Acknowledgements

We are grateful to J. Dover, C. Haaland, D. Lück, B. Theißen and two anonymous reviewers for valuable comments on an earlier version of the manuscript. Moreover, we would like to thank D. Lück and A. Deepen-Wiezcorek for providing information about the butterfly assemblages in the heavy-metal grasslands around Stollberg. We are also grateful to R. Altmüller, H. Andretzke, R. Bolz, M. Bräu, S. Buchholz, S. Caspari, J. Gelbrecht, F. Goosmann, S. Hafner, H. G. Joger, J. Kleinekuhle, D. Koelman, D. Kolligs, A. C. Lange, D. Lück, P. Mansfeld, B. Nannen, R. Ohle, R. Reinhardt, F. Röbbelen, A. Schmidt, P. Schmidt, M. Sommerfeld, R. Trusch, J. Voith and H. Wegner for providing distribution data of Argynnis niobe.

References

  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185CrossRefGoogle Scholar
  2. Beneš J, Kepka P, Konvička M (2002) Limestone quarries as refuges for European xerophilous butterflies. Conserv Biol 17:1058–1069Google Scholar
  3. Bink FA (1992) Ecologische atlas van de dagvlinders van Noordwest-Europa. Schuyt, HaarlemGoogle Scholar
  4. Bos FG, Bosveld MA, Groenendijk DG, van Swaay CAM, Wynhoff I (2006) De dagvlinders van Nederland. Verspreiding en bescherming. Nederlandse Fauna 7. KNNV Uitgeverij, LeidenGoogle Scholar
  5. Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (2013) Tagfalter in Bayern. Eugen Ulmer, StuttgartGoogle Scholar
  6. Brockmann, E (1989) Schutzprogramm für Tagfalter in Hessen (Papilionoidea und Hesperioidea). Stiftung Hessischer Naturschutz, ReiskirchenGoogle Scholar
  7. Brown G (1993) Pflanzensoziologische, vegetationsökologische und ökophysiologische Untersuchungen der Schwermetallrasen der Eifel. Dissertation, Rheinische-Friedrich-Wilhelms-Universität BonnGoogle Scholar
  8. Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE (2000) Consequences of changing biodiversity. Nature 405:234–242CrossRefPubMedGoogle Scholar
  9. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2014) Estimating the normal background rate of species extinction. Conserv Biol 29:452–462CrossRefPubMedGoogle Scholar
  10. Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966CrossRefGoogle Scholar
  11. DWD (Deutscher Wetterdienst) (2016a) Langjährige Mittelwerte. http://www.dwd.de. Accessed 24 Sep 2016
  12. DWD (Deutscher Wetterdienst) (2016b) Archiv Monats- und Tageswerte. http://www.dwd.de. Accessed 24 Sep 2016
  13. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 1, Tagfalter I. Eugen Ulmer, StuttgartGoogle Scholar
  14. EC (European Commission) (2007) Interpretation manual of European union habitats—EUR27. European Commission, DG Environment, BrusselsGoogle Scholar
  15. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation and patch area. J Insect Conserv 12:677–688CrossRefGoogle Scholar
  16. Ernst W (1974) Schwermetallvegetation der Erde. Gustav Fischer Verlag, StuttgartGoogle Scholar
  17. Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Abh Westf Mus Naturkde 66:1–256Google Scholar
  18. Fartmann T (2006) Welche Rolle spielen Störungen für Tagfalter und Widderchen?. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa, vol 68. Abh Westf Mus Naturkde, Münster, pp 259–270Google Scholar
  19. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa, vol 68. Abh Westf Mus Naturkde, Münster, pp 11–57Google Scholar
  20. Föhst P, Broszkus W (1992) Beiträge zur Kenntnis der Schmetterlingsfauna (Insecta: Lepidoptera) des Hunsrück-Nahe-Gebiets (BRD), Rheinland-Pfalz. Fauna und Flora in Rheinland-Pfalz Beih, vol 3. Ges. für Naturschutz und Ornithologie Rheinland-Pfalz, Mainz, pp 5–334Google Scholar
  21. Fric Z, Konvička M (2002) Perleťovec maceškový Argynnis niobe (Linnaeus, 1758). In: Beneš J, Konvička M, Dvořak J, Fric Z, Havelda Z, Pavlíčko A, Vrabec V, Weidenhoffer Z (eds) Motýli České republiky: Rozšiření a ochrana I. Butterflies of the Czech Republic: distribution and Conservation I. SOM, Prague, pp 409–411Google Scholar
  22. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Konvicka M, Shreeve T, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42Google Scholar
  23. Hafner S (2005) Neue Beobachtungen zum Vorkommen von Fabriciana niobe im Schwarzwald und auf der Schwäbischen Alb. In: Ebert G (ed) Die Schmetterlinge Baden-Württembergs. Band 10, Ergänzungsband. Eugen Ulmer, Stuttgart, pp 46–47Google Scholar
  24. Krämer B, Kämpf I, Enderle J, Poniatowski D, Fartmann T (2012) Microhabitat selection in a grassland butterfly: a trade-off between microclimate and food availability. J Insect Conserv 16:857–865CrossRefGoogle Scholar
  25. Kraus W (1993) Verzeichnis der Großschmetterlinge (Insecta: Lepidoptera) der Pfalz. Selbstverlag, Bad DürkheimGoogle Scholar
  26. LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) (2016) Excerpt from the habitat register of North Rhine-Westphalia. Accessed 24 Sep 2016Google Scholar
  27. Lederer G, Künnert R (1963) Beiträge zur Insektenfauna des Mittelrheins und der angrenzenden Gebiete. Entomol Z 73:237–243Google Scholar
  28. Leopold P (2006) Larvalökologie der Rostbinde Hipparchia semele (Linnaeus, 1758; Lepidoptera, Satyrinae) in Nordrhein-Westfalen. Die Notwendigkeit raumzeitlicher Störungsprozesse für den Arterhalt. Dissertation, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  29. Lobenstein U (2003) Die Schmetterlingsfauna des mittleren Niedersachsens. Bestand, Ökologie und Schutz der Großschmetterlinge in der Region Hannover, der Südheide und im unteren Weser-Leine-Bergland. NABU, BonnGoogle Scholar
  30. Löffler F, Stuhldreher G, Fartmann T (2013) How much care does a shrub-feeding hairstreak butterfly, Satyrium spini (Lepidoptera: Lycaenidae), need in calcareous grasslands?. Eur J Entomol 110:145–152CrossRefGoogle Scholar
  31. Munguira M, García-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54Google Scholar
  32. NLWKN (Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz) (ed) (2006) Argynnis niobe. Auszug aus den Funddaten des Tierarten-Erfassungsprogramms der Fachbehörde für Naturschutz. Stand: 13.03.2016Google Scholar
  33. Noret N, Josens G, Escarre J, Lefebvre C, Panichelli S, Meerts P (2007) Development of Issoria lathonia (Lepidoptera: Nymphalidae) on zinc accumulating and nonaccumulating Viola species (Violaceae). Environ Tox Chem 26:565–571CrossRefGoogle Scholar
  34. Pardey A (1999) Grundlagen des Naturschutzes auf Schwermetallstandorten in Nordrhein-Westfalen. Abiotische Verhältnisse, Flora, Vegetation, Fauna aktuelle Schutzsituation und zukünftige Zielsetzungen. In: LANUV (ed) Naturschutzrahmenkonzeption Galmeifluren NRW. LÖBF-Schriftenr Bd 16:7–48Google Scholar
  35. Pardey A, Hacker E, Schippers B (1999) Schutzgebiets- und Biotopverbundplanung für Schwermetallstandorte im Raum Aachen-Stolberg (Nordeifel). In: LANUV (ed) Naturschutzrahmenkonzeption Galmeifluren NRW. LÖBF-Schriftenr. Bd 16:99–128Google Scholar
  36. Petersen J, Pott R (2005) Ostfriesische Inseln. Landschaft und Vegetation im Wandel. Schriften zur Heimatpflege. Veröffentl Niedersächs Heimatbd. 15:1–160Google Scholar
  37. Raskin R (2008) Möglichkeiten und Grenzen der Regeneration von Schwermetallfluren. In: Lennartz G (ed) Renaturierung: Programmatik und Effektivitätsmessung. Academia Verlag, Sankt Augustin, pp 60–76Google Scholar
  38. Reinhardt R (1983) Beiträge zur Insektenfauna der DDR. Lepidoptera—Rhopalocera et Hesperiidae. Entomol Nachr Ber, Beih 2Google Scholar
  39. Reinhardt R (2005) Beiträge zur Tagfalterfauna Sachsens. Teil 2: Familie Nymphalidae (Edelfalter)—Unterfamilien Heliconiinae und Nymphalinae. Mitteilungen Sächs Entomol Suppl 3:1–210Google Scholar
  40. Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands. Natursch Biol Vielfalt 70:167–194Google Scholar
  41. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  42. Salz A, Fartmann T (2009) Coastal dunes as important strongholds for the survival of the rare Niobe fritillary (Argynnis niobe). J Insect Conserv 13:643–654CrossRefGoogle Scholar
  43. SBN (Schweizerischer Bund für Naturschutz – Lepidopteren-Arbeitsgruppe) (ed) (1987) Tagfalter und ihre Lebensräume. Arten, Gefährdung, Schutz. Fotorar AG, Egg/ZHGoogle Scholar
  44. Spitzer L, Beneš J, Konvička M (2009) Oviposition of the Niobe fritillary (Argynnis niobe (Linnaeus, 1758)) at submountain conditions in the Czech Carpathians (Lepidoptera, Nymphalidae). Nachr Entomol Ver Apollo 30:165–168Google Scholar
  45. Stamm K (1981) Prodomus der Lepidopteren-Fauna der Rheinlande und Westfalens. Selbstverlag, SolingenGoogle Scholar
  46. Stoutjesdijk P, Barkman JJ (1992) Microclimate, vegetation and fauna. Opulus Press, UppsalaGoogle Scholar
  47. Stuhldreher G, Fartmann T (2014) When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly. J Insect Conserv 18:965–979CrossRefGoogle Scholar
  48. Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell Scientific, Oxford, pp 149–197Google Scholar
  49. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans Roy Soc B 360:339–357CrossRefGoogle Scholar
  50. Thomas JA, Clarke RT (2004) Extinction rates and butterflies. Science 305:1563–1564CrossRefGoogle Scholar
  51. Thomas JA, Simcox DJ, Wardlaw JC, Elmes GW, Hochberg ME, Clarke RT (1998) Effects of latitude, altitude and climate on the habitat and conservation of the endangered butterfly Maculinea arion and its Myrmica ant hosts. J Insect Conserv 2:39–46CrossRefGoogle Scholar
  52. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc Roy Soc B 268:1791–1796CrossRefGoogle Scholar
  53. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds and plants and the global extinction crisis. Science 303:1879–1881CrossRefPubMedGoogle Scholar
  54. Thomas JA, Simcox DJ, Hovestadt T (2011) Evidence based conservation of butterflies. J Insect Conserv 15:241–258CrossRefGoogle Scholar
  55. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284CrossRefPubMedGoogle Scholar
  56. Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslichtplanung. Hofmann, SchondorfGoogle Scholar
  57. Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23CrossRefGoogle Scholar
  58. WallisDeVries MF (2004) A quantitative conservation approach for the endangered butterfly Maculinea alcon. Conserv Biol 18:488–499Google Scholar
  59. WallisDeVries MF (2006) Larval habitat quality and its significance for the conservation of Melitaea cinxia in northwestern Europe. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westf Mus Naturkde 68:281–294Google Scholar
  60. Warren MS (1993) A review of butterfly conservation in central southern Britain: II. Site management and habitat selection of key species. Biol Conserv 64:37–49CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.MünsterGermany
  2. 2.Department of Biodiversity and Landscape Ecology, Faculty of Biology/ChemistryOsnabrück UniversityOsnabrückGermany
  3. 3.Institute of Biodiversity and Landscape Ecology (IBL)MünsterGermany

Personalised recommendations