Skip to main content

Advertisement

Log in

Larval habitat preferences of a threatened butterfly species in heavy-metal grasslands

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Understanding the factors that determine habitat quality is of vital importance in ensuring appropriate habitat management. Here we used the Niobe fritillary (Argynnis niobe) as a study system to analyse the larval habitat preferences in a small network of heavy-metal grasslands in western Germany. The data were compared with the results of a previous study in coastal dune grasslands of the German North Sea. Based on this knowledge, we give management recommendations for the conservation of this threatened species. The key factors for the survival of A. niobe in heavy-metal grasslands were (i) open vegetation with a warm microclimate and (ii) sufficient host plants for the larvae. This reflects similar results from the previous study in coastal grey dune grasslands. However, in the heavy-metal grasslands, physiological stress generally slows down succession and favours the fritillary’s host plant, the metallophyte Viola calaminaria. As a result, the cover of the host plant was nearly twice as high in heavy-metal grasslands compared to the dune grasslands. Heavy-metal grasslands are of great significance for the conservation of A. niobe and overall butterfly diversity. Usually, the speed of succession in heavy-metal grasslands is slow and, hence, sites with high heavy-metal concentrations are characterised by relatively stable plant composition and vegetation structure. However, on soils with low heavy-metal content a loss of habitats of A. niobe and associated species of conservation concern may occur without management. On those sites sheep grazing seems to be an appropriate way to keep the habitats open and rich in violets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data sources: Bräu et al. (2013), Brockmann (1989), Ebert and Rennwald (1991), Föhst and Broszkus (1992), Kraus (1993), Lederer and Künnert (1963), Lobenstein (2003), NLWKN (2006), Reinhardt (1983, 2005), Stamm (1981) as well as Aquazoo – Löbbecke Museum, H. Andretzke, S. Buchholz, S. Caspari, J. Gelbrecht, S. Hafner, H. G. Joger, J. Kleinekuhle, D. Koelman, D. Kolligs, A. C. Lange, D. Lück, P. Mansfeld, B. Nannen, A. Nunner, R. Ohle, R. Reinhardt, F. Röbbelen, A. Schmidt, P. Schmidt, M. Sommerfeld, R. Trusch (all pers. comm.)

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185

    Article  Google Scholar 

  • Beneš J, Kepka P, Konvička M (2002) Limestone quarries as refuges for European xerophilous butterflies. Conserv Biol 17:1058–1069

    Google Scholar 

  • Bink FA (1992) Ecologische atlas van de dagvlinders van Noordwest-Europa. Schuyt, Haarlem

    Google Scholar 

  • Bos FG, Bosveld MA, Groenendijk DG, van Swaay CAM, Wynhoff I (2006) De dagvlinders van Nederland. Verspreiding en bescherming. Nederlandse Fauna 7. KNNV Uitgeverij, Leiden

  • Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (2013) Tagfalter in Bayern. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Brockmann, E (1989) Schutzprogramm für Tagfalter in Hessen (Papilionoidea und Hesperioidea). Stiftung Hessischer Naturschutz, Reiskirchen

    Google Scholar 

  • Brown G (1993) Pflanzensoziologische, vegetationsökologische und ökophysiologische Untersuchungen der Schwermetallrasen der Eifel. Dissertation, Rheinische-Friedrich-Wilhelms-Universität Bonn

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  PubMed  Google Scholar 

  • De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2014) Estimating the normal background rate of species extinction. Conserv Biol 29:452–462

    Article  PubMed  Google Scholar 

  • Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966

    Article  Google Scholar 

  • DWD (Deutscher Wetterdienst) (2016a) Langjährige Mittelwerte. http://www.dwd.de. Accessed 24 Sep 2016

  • DWD (Deutscher Wetterdienst) (2016b) Archiv Monats- und Tageswerte. http://www.dwd.de. Accessed 24 Sep 2016

  • Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 1, Tagfalter I. Eugen Ulmer, Stuttgart

    Google Scholar 

  • EC (European Commission) (2007) Interpretation manual of European union habitats—EUR27. European Commission, DG Environment, Brussels

    Google Scholar 

  • Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation and patch area. J Insect Conserv 12:677–688

    Article  Google Scholar 

  • Ernst W (1974) Schwermetallvegetation der Erde. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Abh Westf Mus Naturkde 66:1–256

    Google Scholar 

  • Fartmann T (2006) Welche Rolle spielen Störungen für Tagfalter und Widderchen?. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa, vol 68. Abh Westf Mus Naturkde, Münster, pp 259–270

    Google Scholar 

  • Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa, vol 68. Abh Westf Mus Naturkde, Münster, pp 11–57

    Google Scholar 

  • Föhst P, Broszkus W (1992) Beiträge zur Kenntnis der Schmetterlingsfauna (Insecta: Lepidoptera) des Hunsrück-Nahe-Gebiets (BRD), Rheinland-Pfalz. Fauna und Flora in Rheinland-Pfalz Beih, vol 3. Ges. für Naturschutz und Ornithologie Rheinland-Pfalz, Mainz, pp 5–334

  • Fric Z, Konvička M (2002) Perleťovec maceškový Argynnis niobe (Linnaeus, 1758). In: Beneš J, Konvička M, Dvořak J, Fric Z, Havelda Z, Pavlíčko A, Vrabec V, Weidenhoffer Z (eds) Motýli České republiky: Rozšiření a ochrana I. Butterflies of the Czech Republic: distribution and Conservation I. SOM, Prague, pp 409–411

  • García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Konvicka M, Shreeve T, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42

    Google Scholar 

  • Hafner S (2005) Neue Beobachtungen zum Vorkommen von Fabriciana niobe im Schwarzwald und auf der Schwäbischen Alb. In: Ebert G (ed) Die Schmetterlinge Baden-Württembergs. Band 10, Ergänzungsband. Eugen Ulmer, Stuttgart, pp 46–47

    Google Scholar 

  • Krämer B, Kämpf I, Enderle J, Poniatowski D, Fartmann T (2012) Microhabitat selection in a grassland butterfly: a trade-off between microclimate and food availability. J Insect Conserv 16:857–865

    Article  Google Scholar 

  • Kraus W (1993) Verzeichnis der Großschmetterlinge (Insecta: Lepidoptera) der Pfalz. Selbstverlag, Bad Dürkheim

    Google Scholar 

  • LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) (2016) Excerpt from the habitat register of North Rhine-Westphalia. Accessed 24 Sep 2016

  • Lederer G, Künnert R (1963) Beiträge zur Insektenfauna des Mittelrheins und der angrenzenden Gebiete. Entomol Z 73:237–243

    Google Scholar 

  • Leopold P (2006) Larvalökologie der Rostbinde Hipparchia semele (Linnaeus, 1758; Lepidoptera, Satyrinae) in Nordrhein-Westfalen. Die Notwendigkeit raumzeitlicher Störungsprozesse für den Arterhalt. Dissertation, Westfälische Wilhelms-Universität Münster

  • Lobenstein U (2003) Die Schmetterlingsfauna des mittleren Niedersachsens. Bestand, Ökologie und Schutz der Großschmetterlinge in der Region Hannover, der Südheide und im unteren Weser-Leine-Bergland. NABU, Bonn

  • Löffler F, Stuhldreher G, Fartmann T (2013) How much care does a shrub-feeding hairstreak butterfly, Satyrium spini (Lepidoptera: Lycaenidae), need in calcareous grasslands?. Eur J Entomol 110:145–152

    Article  Google Scholar 

  • Munguira M, García-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54

    Google Scholar 

  • NLWKN (Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz) (ed) (2006) Argynnis niobe. Auszug aus den Funddaten des Tierarten-Erfassungsprogramms der Fachbehörde für Naturschutz. Stand: 13.03.2016

  • Noret N, Josens G, Escarre J, Lefebvre C, Panichelli S, Meerts P (2007) Development of Issoria lathonia (Lepidoptera: Nymphalidae) on zinc accumulating and nonaccumulating Viola species (Violaceae). Environ Tox Chem 26:565–571

    Article  CAS  Google Scholar 

  • Pardey A (1999) Grundlagen des Naturschutzes auf Schwermetallstandorten in Nordrhein-Westfalen. Abiotische Verhältnisse, Flora, Vegetation, Fauna aktuelle Schutzsituation und zukünftige Zielsetzungen. In: LANUV (ed) Naturschutzrahmenkonzeption Galmeifluren NRW. LÖBF-Schriftenr Bd 16:7–48

  • Pardey A, Hacker E, Schippers B (1999) Schutzgebiets- und Biotopverbundplanung für Schwermetallstandorte im Raum Aachen-Stolberg (Nordeifel). In: LANUV (ed) Naturschutzrahmenkonzeption Galmeifluren NRW. LÖBF-Schriftenr. Bd 16:99–128

    Google Scholar 

  • Petersen J, Pott R (2005) Ostfriesische Inseln. Landschaft und Vegetation im Wandel. Schriften zur Heimatpflege. Veröffentl Niedersächs Heimatbd. 15:1–160

  • Raskin R (2008) Möglichkeiten und Grenzen der Regeneration von Schwermetallfluren. In: Lennartz G (ed) Renaturierung: Programmatik und Effektivitätsmessung. Academia Verlag, Sankt Augustin, pp 60–76

    Google Scholar 

  • Reinhardt R (1983) Beiträge zur Insektenfauna der DDR. Lepidoptera—Rhopalocera et Hesperiidae. Entomol Nachr Ber, Beih 2

  • Reinhardt R (2005) Beiträge zur Tagfalterfauna Sachsens. Teil 2: Familie Nymphalidae (Edelfalter)—Unterfamilien Heliconiinae und Nymphalinae. Mitteilungen Sächs Entomol Suppl 3:1–210

  • Reinhardt R, Bolz R (2011) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands. Natursch Biol Vielfalt 70:167–194

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Salz A, Fartmann T (2009) Coastal dunes as important strongholds for the survival of the rare Niobe fritillary (Argynnis niobe). J Insect Conserv 13:643–654

    Article  Google Scholar 

  • SBN (Schweizerischer Bund für Naturschutz – Lepidopteren-Arbeitsgruppe) (ed) (1987) Tagfalter und ihre Lebensräume. Arten, Gefährdung, Schutz. Fotorar AG, Egg/ZH

  • Spitzer L, Beneš J, Konvička M (2009) Oviposition of the Niobe fritillary (Argynnis niobe (Linnaeus, 1758)) at submountain conditions in the Czech Carpathians (Lepidoptera, Nymphalidae). Nachr Entomol Ver Apollo 30:165–168

    Google Scholar 

  • Stamm K (1981) Prodomus der Lepidopteren-Fauna der Rheinlande und Westfalens. Selbstverlag, Solingen

  • Stoutjesdijk P, Barkman JJ (1992) Microclimate, vegetation and fauna. Opulus Press, Uppsala

    Google Scholar 

  • Stuhldreher G, Fartmann T (2014) When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly. J Insect Conserv 18:965–979

    Article  Google Scholar 

  • Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell Scientific, Oxford, pp 149–197

  • Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos Trans Roy Soc B 360:339–357

    Article  CAS  Google Scholar 

  • Thomas JA, Clarke RT (2004) Extinction rates and butterflies. Science 305:1563–1564

    Article  CAS  Google Scholar 

  • Thomas JA, Simcox DJ, Wardlaw JC, Elmes GW, Hochberg ME, Clarke RT (1998) Effects of latitude, altitude and climate on the habitat and conservation of the endangered butterfly Maculinea arion and its Myrmica ant hosts. J Insect Conserv 2:39–46

    Article  Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc Roy Soc B 268:1791–1796

    Article  CAS  Google Scholar 

  • Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds and plants and the global extinction crisis. Science 303:1879–1881

    Article  CAS  PubMed  Google Scholar 

  • Thomas JA, Simcox DJ, Hovestadt T (2011) Evidence based conservation of butterflies. J Insect Conserv 15:241–258

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslichtplanung. Hofmann, Schondorf

  • Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23

    Article  Google Scholar 

  • WallisDeVries MF (2004) A quantitative conservation approach for the endangered butterfly Maculinea alcon. Conserv Biol 18:488–499

    Google Scholar 

  • WallisDeVries MF (2006) Larval habitat quality and its significance for the conservation of Melitaea cinxia in northwestern Europe. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westf Mus Naturkde 68:281–294

  • Warren MS (1993) A review of butterfly conservation in central southern Britain: II. Site management and habitat selection of key species. Biol Conserv 64:37–49

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Dover, C. Haaland, D. Lück, B. Theißen and two anonymous reviewers for valuable comments on an earlier version of the manuscript. Moreover, we would like to thank D. Lück and A. Deepen-Wiezcorek for providing information about the butterfly assemblages in the heavy-metal grasslands around Stollberg. We are also grateful to R. Altmüller, H. Andretzke, R. Bolz, M. Bräu, S. Buchholz, S. Caspari, J. Gelbrecht, F. Goosmann, S. Hafner, H. G. Joger, J. Kleinekuhle, D. Koelman, D. Kolligs, A. C. Lange, D. Lück, P. Mansfeld, B. Nannen, R. Ohle, R. Reinhardt, F. Röbbelen, A. Schmidt, P. Schmidt, M. Sommerfeld, R. Trusch, J. Voith and H. Wegner for providing distribution data of Argynnis niobe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Salz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salz, A., Fartmann, T. Larval habitat preferences of a threatened butterfly species in heavy-metal grasslands. J Insect Conserv 21, 129–136 (2017). https://doi.org/10.1007/s10841-017-9961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-9961-7

Keywords

Navigation