Journal of Insect Conservation

, Volume 21, Issue 5–6, pp 813–826 | Cite as

Grassland butterfly communities of the Western Siberian forest steppe in the light of post-Soviet land abandonment

  • Johanna TrappeEmail author
  • Friederike Kunz
  • Sarah Weking
  • Johannes Kamp


Land-use change and homogenization of the landscape are severe threats to butterfly diversity. The break-up of the Soviet Union in 1991 led to land abandonment on very large scales. This study aims at assessing the impact of the ongoing abandonment of traditionally managed grasslands and subsequent vegetation succession on butterflies in Western Siberia, a species-rich area with butterfly communities similar to those of Central and Eastern European grasslands. 20 mown and 20 abandoned grasslands were surveyed using Distance Sampling methods in summer 2015. We recorded 997 individuals from 44 species, pooled over two sampling events. An indicator species analysis and detrended correspondence analysis revealed that communities likely underwent changes in species composition during succession, and that habitat specialization decreased. In contrast to previous studies we found no evidence of early stages of abandonment being more species-rich than mown meadows. On unmanaged grasslands litter cover and litter depth were significantly higher than on mown grasslands. Half of the abandoned sites were riparian meadows. The dynamics and ecological characteristics of the floodplain had a stronger influence on community composition than land use. This study shows that structural heterogeneity and lepidopteran diversity of the vast, but understudied, Western Siberian grasslands are driven by mechanic and natural disturbance. Conservation should aim at responding to trends of abandonment and actively maintaining a mosaic with grasslands of different successional stages.


Land-use change Secondary succession Distance sampling Conservation Floodplain 



We thank Roman Latyntsev for logistical support. This study was carried out as part of the research project SASCHA (‘Sustainable land management and adaptation strategies to climate change for the Western Siberian Grain Belt’) and financial support was provided by the German Government, Federal Ministry of Education and Research within their Sustainable Land Management funding framework.


This study was funded by the German Government, Federal Ministry of Education and Research within their Sustainable Land Management funding framework (Grant No. 01LL09006F).

Supplementary material

10841_2017_21_MOESM1_ESM.xlsx (18 kb)
Supplementary material 1 (XLSX 18 KB)
10841_2017_21_MOESM2_ESM.xlsx (13 kb)
Supplementary material 2 (XLSX 12 KB)
10841_2017_21_MOESM3_ESM.xlsx (16 kb)
Supplementary material 3 (XLSX 15 KB)
10841_2017_21_MOESM4_ESM.xlsx (15 kb)
Supplementary material 4 (XLSX 14 KB)
10841_2017_21_MOESM5_ESM.docx (38 kb)
Supplementary material 5 (DOCX 38 KB)


  1. Balmer O, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for central European butterfly communities: rethinking conservation practices. Conserv Biol 14(3):746–757. doi: 10.1046/j.1523-1739.2000.98612.x CrossRefGoogle Scholar
  2. Barton K (2016) MuMIn: multi-model inference.
  3. Bergman K-O, Ask L, Askling J, Ignell H, Wahlman H, Milberg P (2008) Importance of boreal grasslands in Sweden for butterfly diversity and effects of local and landscape habitat factors. Biodivers Conserv 17(1):139–153. doi: 10.1007/s10531-007-9235-x CrossRefGoogle Scholar
  4. Bragina EV, Ives AR, Pidgeon AM, Kuemmerle T, Baskin LM, Gubar YP, Piquer-Rodriguez M, Keuler NS, Petrosyan VG, Radeloff VC (2015) Rapid declines of large mammal populations after the collapse of the Soviet Union. Conserv Biol 29(3):844–853. doi:  10.1111/cobi.12450 CrossRefPubMedGoogle Scholar
  5. Brinkert A, Hölzel N, Sidorova TV, Kamp J (2016) Spontaneous steppe restoration on abandoned cropland in Kazakhstan: grazing affects successional pathways. Biodivers Conserv 25(12):2543–2561. doi:  10.1007/s10531-015-1020-7 CrossRefGoogle Scholar
  6. Bubová T, Vrabec V, Kulma M, Nowicki P (2015) Land management impacts on European butterflies of conservation concern: a review. J Insect Conserv 19(5):805–821. doi:  10.1007/s10841-015-9819-9 CrossRefGoogle Scholar
  7. Buckland ST, Marsden SJ, Green RE (2008) Estimating bird abundance: making methods work. Bird Con Int 18(S1). doi: 10.1017/S0959270908000294
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach, 2 edn. Springer, New YorkGoogle Scholar
  9. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486(7401):59–67. doi:  10.1038/nature11148 CrossRefPubMedGoogle Scholar
  10. Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2015) Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J Photogram Remote Sens 103:7–27. doi: 10.1016/j.isprsjprs.2014.09.002 CrossRefGoogle Scholar
  11. Collinge SK, Prudic KL, Oliver JC (2003) Effects of local habitat characteristics and landscape context on grassland butterfly diversity. Conserv Biol 17(1):178–187. doi: 10.1046/j.1523-1739.2003.01315.x CrossRefGoogle Scholar
  12. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1302–1310. doi: 10.1126/science.199.4335.1302 CrossRefPubMedGoogle Scholar
  13. Cremene C, Groza G, Rakosy L, Schileyko AA, Baur A, Erhardt A, Baur B (2005) Alterations of steppe-like grasslands in Eastern Europe: a threat to regional biodiversity hotspots. Conserv Biol 19(5):1606–1618. doi:  10.1111/j.1523-1739.2005.00084.x CrossRefGoogle Scholar
  14. Curtis RJ, Brereton TM, Dennis RLH, Carbone C, Isaac NJB, Diamond S (2015) Butterfly abundance is determined by food availability and is mediated by species traits. J Appl Ecol 52(6):1676–1684. doi:  10.1111/1365-2664.12523 CrossRefGoogle Scholar
  15. Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14. doi:  10.1016/j.agee.2013.12.015 CrossRefGoogle Scholar
  16. Dennis RLH (2004) Butterfly habitats, broad-scale biotope affiliations, and structural exploitation of vegetation at finer scales: the matrix revisited. Ecol Entomol 29(6):744–752. doi: 10.1111/j.0307-6946.2004.00646.x CrossRefGoogle Scholar
  17. Dolek M, Geyer A (1997) Influence of management on butterflies of rare grassland ecosystems in Germany. J Insect Conserv 1(2):125–130. doi: 10.1023/A:1018443412153 CrossRefGoogle Scholar
  18. Dwire KA, Kauffman J (2003) Fire and riparian ecosystems in landscapes of the western USA. For Ecol Manage 178(1–2):61–74. doi: 10.1016/S0378-1127(03)00053-7 CrossRefGoogle Scholar
  19. Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern third of the world. Science 266(5186):753–762. doi: 10.1126/science.266.5186.753 CrossRefPubMedGoogle Scholar
  20. Eilers S, Pettersson LB, Öckinger E (2013) Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecol Entomol 38(2):183–192. doi:  10.1111/een.12008 CrossRefGoogle Scholar
  21. Erhardt A (1985) Diurnal lepidoptera: sensitive indicators of cultivated and abandoned grassland. J Appl Ecol 22(3):849. doi: 10.2307/2403234 CrossRefGoogle Scholar
  22. Fies R, Rabl D, Schulze CH, Fiedler K (2016) Summer floods shape meadow butterfly communities in a floodplain nature reserve in Central Europe. J Insect Conserv 20(3):433–445. doi: 10.1007/s10841-016-9876-8 CrossRefGoogle Scholar
  23. Fiske I, Chandler R (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43(10):1–23CrossRefGoogle Scholar
  24. GADM (2015) Global administrative areas: boundaries without limits. Accessed 7 June 2016
  25. Habel JC, Dengler J, Janišová M, Török P, Wellstein C, Wiezik M (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodivers Conserv 22(10):2131–2138. doi: 10.1007/s10531-013-0537-x CrossRefGoogle Scholar
  26. Habel JC, Segerer A, Ulrich W, Torchyk O, Weisser WW, Schmitt T (2016) Butterfly community shifts over two centuries. Conserv Biol 30(4):754–762. doi: 10.1111/cobi.12656
  27. Hansson M, Fogelfors H (2000) Management of a semi-natural grassland: results from a 15-year-old experiment in southern Sweden. J Veg Sci 11(1):31–38. doi: 10.2307/3236772 CrossRefGoogle Scholar
  28. Henle K, Alard D, Clitherow J, Cobb P, Firbank L, Kull T, McCracken D, Moritz RF, Niemelä J, Rebane M, Wascher D, Watt A, Young J (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe-A review. Agric Ecosyst Environ 124(1–2):60–71. doi: 10.1016/j.agee.2007.09.005 CrossRefGoogle Scholar
  29. Herrando S, Brotons L, Anton M, Páramo F, Villero D, Titeux N, Quesada J, Stefanescu C (2016) Assessing impacts of land abandonment on Mediterranean biodiversity using indicators based on bird and butterfly monitoring data. Environ Conserv 43(01):69–78. doi: 10.1017/S0376892915000260 CrossRefGoogle Scholar
  30. Herzon I, Marja R, Menshikova S, Kondratyev A (2014) Farmland bird communities in an agricultural landscape in Northwest Russia: seasonal and spatial patterns. Agric Ecosyst Environ 183:78–85. doi: 10.1016/j.agee.2013.10.015 CrossRefGoogle Scholar
  31. Huston MA (1994) Biological diversity: the coexistence of species. Cambridge University Press, CambridgeGoogle Scholar
  32. IIASA and RAS (2002) Land Resources of Russia: Version 1.1. Accessed 10 June 2016
  33. Isaac NJB, Cruickshanks KL, Weddle AM, Marcus Rowcliffe J, Brereton TM, Dennis RLH, Shuker DM, Thomas CD (2011) Distance sampling and the challenge of monitoring butterfly populations. Methods Ecol Evol 2(6):585–594. doi: 10.1111/j.2041-210X.2011.00109.x CrossRefGoogle Scholar
  34. Kamp J, Urazaliev R, Donald PF, Hölzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Conserv 144(11):2607–2614. doi:  10.1016/j.biocon.2011.07.010 CrossRefGoogle Scholar
  35. Kämpf I, Mathar W, Kuzmin I, Hölzel N, Kiehl K (2016) Post-Soviet recovery of grassland vegetation on abandoned fields in the forest steppe zone of Western Siberia. Biodivers Conserv:1–18. doi:  10.1007/s10531-016-1078-x
  36. Kati V, Zografou K, Tzirkalli E, Chitos T, Willemse L (2012) Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: the roles of disturbance and environmental factors. J Insect Conserv 16(6):807–818. doi: 10.1007/s10841-012-9467-2 CrossRefGoogle Scholar
  37. Kühling I, Broll G, Trautz D (2016) Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt. Sci Total Environ 544:271–280. doi: 10.1016/j.scitotenv.2015.11.129 CrossRefPubMedGoogle Scholar
  38. Kuussaari M, Heliölä J, Pöyry J, Saarinen K (2007) Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J Insect Conserv 11(4):351–366. doi: 10.1007/s10841-006-9052-7 CrossRefGoogle Scholar
  39. Larsen S, Alp M (2015) Ecological thresholds and riparian wetlands: an overview for environmental managers. Limnology 16(1):1–9. doi: 10.1007/s10201-014-0436-1 CrossRefGoogle Scholar
  40. MacDonald D, Crabtree J, Wiesinger G, Dax T, Stamou N, Fleury P, Gutierrez Lazpita J, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manage 59(1):47–69. doi: 10.1006/jema.1999.0335 CrossRefGoogle Scholar
  41. Mathar WP, Kämpf I, Kleinebecker T, Kuzmin I, Tolstikov A, Tupitsin S, Hölzel N (2015) Floristic diversity of meadow steppes in the Western Siberian Plain: effects of abiotic site conditions, management and landscape structure. Biodivers Conserv. doi: 10.1007/s10531-015-1023-4 Google Scholar
  42. McCune B, Mefford MJ (2011) PC-ORD: multivariate analysis of ecological data. MjM Software Design, Gleneden BeachGoogle Scholar
  43. Menne MJ, Durre I, Korzeniewski B, McNeill S, Thomas K, Yin X, Anthony S, Ray R, Vose RS, Gleason BE, Houston TG (2016) Global Historical Climatology Network - Daily (GHCN-Daily), Version 3.3.0: Station Tyumen AMSG, RS (1981–2015). Accessed 10 June 2016
  44. Middleton BA (2013) Rediscovering traditional vegetation management in preserves: trading experiences between cultures and continents. Biol Conserv 158:271–279. doi: 10.1016/j.biocon.2012.10.003 CrossRefGoogle Scholar
  45. Natural Earth (2016) Free vector and raster map data at 1:10 m, 1:50 m, and 1:110 m scales. Accessed 7 June 2016
  46. Nilsson SG, Franzén M, Jönsson E (2008) Long-term land-use changes and extinction of specialised butterflies. Insect Conserv Divers. doi: 10.1111/j.1752-4598.2008.00027.x Google Scholar
  47. Nimis PL, Malyshev LI, Bolognini G (1994) A phytogeographic analysis of birch woodlands in the southern part of West Siberia. Vegetation 113(1):25–39. doi: 10.1007/BF00045461 CrossRefGoogle Scholar
  48. Öckinger E, Eriksson AK, Smith HG (2006) Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol Conserv 133(3):291–300. doi: 10.1016/j.biocon.2006.06.009 CrossRefGoogle Scholar
  49. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Gavin L. Simpson, Peter Solymos M, Henry H, Stevens, Helene Wagner (2016) vegan: community ecology package.
  50. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the World: a new map of life on earth. Bioscience 51(11):933. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 CrossRefGoogle Scholar
  51. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269(5222):347–350. doi: 10.1126/science.269.5222.347 CrossRefPubMedGoogle Scholar
  52. Pollard E (1977) A method for assessing changes in the abundance of butterflies. Biol Conserv 12(2):115–134. doi: 10.1016/0006-3207(77)90065-9 CrossRefGoogle Scholar
  53. Pöyry J, Lindgren S, Salminen J, Kuussaari M (2004) Restoration of butterfly and moth communities in semi-natural grasslands by cattle grazing. Ecol Appl 14(6):1656–1670. doi: 10.1890/03-5151 CrossRefGoogle Scholar
  54. Pöyry J, Lindgren S, Salminen J, Kuussaari M (2005) Responses of butterfly and moth species to restored cattle grazing in semi-natural grasslands. Biol Conserv 122(3):465–478. doi: 10.1016/j.biocon.2004.09.007 CrossRefGoogle Scholar
  55. Pöyry J, Luoto M, Paukkunen J, Pykälä J, Raatikainen K, Kuussaari M (2006) Different responses of plants and herbivore insects to a gradient of vegetation height: an indicator of the vertebrate grazing intensity and successional age. Oikos 115(3):401–412. doi: 10.1111/j.2006.0030-1299.15126.x CrossRefGoogle Scholar
  56. Prishchepov AV, Müller D, Dubinin M, Baumann M, Radeloff VC (2013) Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 30(1):873–884. doi: 10.1016/j.landusepol.2012.06.011 CrossRefGoogle Scholar
  57. Pykälä J, Luoto M, Heikkinen RK, Kontula T (2005) Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic Appl Ecol 6(1):25–33. doi: 10.1016/j.baae.2004.10.002 CrossRefGoogle Scholar
  58. Queiroz C, Beilin R, Folke C, Lindborg R (2014) Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front Ecol Environ 12(5):288–296. doi: 10.1890/120348 CrossRefGoogle Scholar
  59. R Core Team (2015) R: a language and environment for statistical computing.
  60. Rey Benayas J (2007) Abandonment of agricultural land: an overview of drivers and consequences. CAB Rev 2(057). doi: 10.1079/PAVSNNR20072057
  61. Royle JA, Dawson DK, Bates S (2004) Modeling abundance effects in distance sampling. Ecology 85(6):1591–1597. doi: 10.1890/03-3127 CrossRefGoogle Scholar
  62. Sabo JL, Sponseller R, Dixon M, Gade K, Harms T, Heffernan J, Jani A, Katz G, Soykan C, Watts J, Welter J (2005) Riparian zones increase regional species richness by harboring different, not more, species. Ecology 86(1):56–62. doi: 10.1890/04-0668 CrossRefGoogle Scholar
  63. Sala OE (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774. doi: 10.1126/science.287.5459.1770
  64. Schepaschenko D, McCallum I, Shvidenko A, Fritz S, Kraxner F, Obersteiner M (2011) A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information. J Land Use Sci 6(4):245–259. doi: 10.1080/1747423X.2010.511681 CrossRefGoogle Scholar
  65. Schmithüsen J (ed) (1976) Atlas zur Biogeographie, vol 303. Bibliograph. Inst, Mannheim BI-HochschulatlantenGoogle Scholar
  66. Selezneva NS (1973) Lesostep. In: Gwodezkij NA (ed) Fisiko-Geograficheskoe Rayonirovanie Tyumenskoy Oblasti. Izdatelstvo MGU, Moscow, pp 144–174Google Scholar
  67. Settele J, Dover JW, Dolek M, Konvicka M (2009) Butterflies of European ecosystems: impact of land use and options for conservation management. In: Settele J, Shreeve T, Konvička M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, CambridgeGoogle Scholar
  68. Sieber A, Uvarov NV, Baskin LM, Radeloff VC, Bateman BL, Pankov AB, Kuemmerle T (2015) Post-Soviet land-use change effects on large mammals’ habitat in European Russia. Biol Conserv 191:567–576. doi: 10.1016/j.biocon.2015.07.041 CrossRefGoogle Scholar
  69. Skórka P, Settele J, Woyciechowski M (2007) Effects of management cessation on grassland butterflies in southern Poland. Agric Ecosyst Environ 121(4):319–324. doi: 10.1016/j.agee.2006.11.001 CrossRefGoogle Scholar
  70. Söderström B, Svensson B, Vessby K, Glimskär A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers Conserv 10(11):1839–1863. doi: 10.1023/A:1013153427422 CrossRefGoogle Scholar
  71. Stefanescu C, Peñuelas J, Filella I (2009) Rapid changes in butterfly communities following the abandonment of grasslands: a case study. Insect Conserv Divers 2(4):261–269. doi: 10.1111/j.1752-4598.2009.00063.x CrossRefGoogle Scholar
  72. Steffan-Dewenter I, Tscharntke T (1997) Early succession of butterfly and plant communities on set-aside fields. Oecologia 109(2):294–302. doi: 10.1007/s004420050087 CrossRefPubMedGoogle Scholar
  73. Stettmer C (ed) (2007) Die Tagfalter Bayerns und Österreichs, 2. überarb. Aufl. ANL, Laufen/SalzachGoogle Scholar
  74. Stoutjesdijk PH, Barkman JJ (2014) Microclimate, Vegetation & Fauna. Brill, LeidenGoogle Scholar
  75. Suslov SP (1961) Physical geography of Asiatic Russia. W. H. Freeman, San FranciscoGoogle Scholar
  76. Sutcliffe LME, Batáry P, Kormann U, Báldi A, Dicks LV, Herzon I, Kleijn D, Tryjanowski P, Apostolova I, Arlettaz R, Aunins A, Aviron S, Baležentienė L, Fischer C, Halada L, Hartel T, Helm A, Hristov I, Jelaska SD, Kaligarič M, Kamp J, Klimek S, Koorberg P, Kostiuková J, Kovács-Hostyánszki A, Kuemmerle T, Leuschner C, Lindborg R, Loos J, Maccherini S, Marja R, Máthé O, Paulini I, Proença V, Rey-Benayas J, Sans FX, Seifert C, Stalenga J, Timaeus J, Török P, van Swaay C, Viik E, Tscharntke T, Kühn I (2015) Harnessing the biodiversity value of Central and Eastern European farmland. Divers Distrib 21(6):722–730. doi: 10.1111/ddi.12288 CrossRefGoogle Scholar
  77. Tchebakova NM, Parfenova E, Soja AJ (2009) The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett 4(4):45013. doi: 10.1088/1748-9326/4/4/045013 CrossRefGoogle Scholar
  78. Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv. 29(03). doi: 10.1017/S037689290200022X
  79. van Swaay C, Warren M, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10(2):189–209. doi: 10.1007/s10841-006-6293-4 CrossRefGoogle Scholar
  80. van Dyck H, van Strien AJ, Maes D, van Swaay C (2009) Declines in common, widespread butterflies in a landscape under intense human use. Conserv Biol 23(4):957–965. doi: 10.1111/j.1523-1739.2009.01175.x CrossRefPubMedGoogle Scholar
  81. van Swaay C, Collins S, Dušej G, Maes D, Munguira ML, Rakosy L, Ryrholm N, Šašić M, Settele J, Thomas J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2012) Dos and Don’ts for butterflies of the habitats directive of the European union. Nat Conserv 1:73–153. doi: 10.3897/natureconservation.1.2786 CrossRefGoogle Scholar
  82. van Swaay C, van Strien A, Aghababyan K, Astrom S, Botham M, Brereton T, Chambers P, Collins S, Domenech Ferre M, Escobes R (2015) The European butterfly indicator for grassland species: 1990–2013. Report VS2015.009. De Vlinderstichting, WageningenGoogle Scholar
  83. Walter H, Breckle S-W (1994) Spezielle Ökologie der gemässigten und arktischen Zonen Euro-Nordasiens: Zonobiom VI - IX, 2., überarb. Aufl. UTB für Wissenschaft Große Reihe, Geo-Biosphäre; 3. Fischer, StuttgartGoogle Scholar
  84. Weking S, Kämpf I, Mathar W, Hölzel N (2016) Effects of land use and landscape patterns on Orthoptera communities in the Western Siberian forest steppe. Biodivers Conserv 25(12):1–19CrossRefGoogle Scholar
  85. Wenzel M, Schmitt T, Weitzel M, Seitz A (2006) The severe decline of butterflies on western German calcareous grasslands during the last 30 years: a conservation problem. Biol Conserv 128(4):542–552. doi: 10.1016/j.biocon.2005.10.022 CrossRefGoogle Scholar
  86. Wesche K, Ambarlı D, Kamp J, Török P, Treiber J, Dengler J (2016) The Palaearctic steppe biome: a new synthesis. Biodivers Conserv 25(12):2197–2231. doi: 10.1007/s10531-016-1214-7 CrossRefGoogle Scholar
  87. Zakh VA, Ryabogina NE, Chlachula J (2010) Climate and environmental dynamics of the mid- to late Holocene settlement in the Tobol–Ishim forest-steppe region, West Siberia. Clim Dyn Prehist Occup 220(1–2):95–101. doi: 10.1016/j.quaint.2009.09.010 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Biodiversity and Ecosystem Research Group, Institute of Landscape EcologyUniversity of MünsterMünsterGermany

Personalised recommendations