Skip to main content

Mortal combat between ants and caterpillars: an ominous threat to the endangered Schaus swallowtail butterfly (Heraclides aristodemus ponceanus) in the Florida Keys, USA

Abstract

The federally endangered Schaus swallowtail butterfly (Heraclides aristodemus ponceanus) has reached critically low numbers. Exotic ants are a potential threat to H. a. ponceanus and other rare butterflies as they can attack immature stages. Ant surveys conducted in subtropical dry forests in Biscayne National Park documented ant species diversity and relative abundance. A caterpillar predator exclusion experiment using physical barriers in different combinations evaluated caterpillar survivorship of both early and late instar caterpillars exposed to different threats. Ant-caterpillar interactions were also documented by placing caterpillars on plants and observing physical interactions between caterpillars and ants. A total of 1418 ants comprising 25 ant species was captured and identified. In canopies of H. a. ponceanus host plants, 243 ants comprising 12 species were found. The four most common ants collected in the host plant canopies were Pseudomyrmex gracilis, Camponotus planatus, Cremastogaster ashmeadi, and Camponotus floridanus. The predator exclusion experiment revealed survivorship was significantly lower for early and late instar caterpillars without any physical barrier, as well as for early instars not protected by a mesh cage. Pseudomyrmex gracilis and C. floridanus were more aggressive towards caterpillars in comparison to other ant species; these two species ranked first and second in the “ant danger index” ranking predatory abilities of the four most common ant species. Pseudomyrmex gracilis is a common arboreal exotic ant in Biscayne National Park and presents a major threat to caterpillars during their earliest life stages.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Allen CR, Epperson DM, Garmestani AS (2004) Red imported fire ant impacts on wildlife: a decade of research. Am Midl Nat 152:88–103. doi:10.1674/0003-0031(2004)152[0088:RIFAIO]2.0.CO;2

    Article  Google Scholar 

  • Andersen AN, Hoffmann BD, Muller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17. doi:10.1046/j.1365-2664.2002.00704.x

    Article  Google Scholar 

  • Bächtold A, Del-Claro K, Kaminski LA, Freitas AVL, Oliveira PS (2012) Natural history of an ant-plant-butterfly interaction in a Neotropical savanna. J Nat Hist 46:943–954. doi:10.1080/00222933.2011.651649

    Article  Google Scholar 

  • Beuzelin JM, Reagan TE, Akbar W, Cormier HJ, Flanagan JW, Blouin DC (2009) Impact of Hurricane Rita storm surge on sugarcane borer (Lepidoptera: Crambidae) management in Louisiana. J Econ Entomol 102:1054–1061

    CAS  Article  PubMed  Google Scholar 

  • Brown WL (2000) Diversity of ants. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DC, pp 45–79

    Google Scholar 

  • Buckley RC (1987) Interactions involving plants, Homoptera, and ants. Annu Rev Ecol Syst 18:111–135. doi:10.1146/annurev.ecolsys.18.1.111

    Article  Google Scholar 

  • Buren WF, Allen GE, Whitcomb WH, Lennartz FE, Williams RN (1974) Zoogeography of the imported fire ants. J N Y Entomol Soc 82:113–124

    Google Scholar 

  • Calcaterra L, Cabrera S, Briano J (2016) Local co-occurrence of several highly invasive ants in their native range: are they all ecologically dominate species? Insectes Soc 63:407–419. doi:10.1007/s00040-016-0481-3

    Article  Google Scholar 

  • Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4:231–257. doi:10.1146/annurev.es.04.110173.001311

    Article  Google Scholar 

  • Castellanos I, Barbosa P, Zuria I, Caldas A (2015) Quantifying insect predation with predator exclusion cages: the role of prey antipredator behavior as a source of bias. Entomol Exp Appl 157:360–364. doi:10.1111/eea.12375

    Article  Google Scholar 

  • Cuautle M, Rico-Gray V (2003) The effect of wasps and ants on the reproductive success of the extrafloral nectaried plant Turnera ulmifolia (Turneraceae). Funct Ecol 17:417–423. doi:10.1046/j.1365-2435.2003.00732.x

    Article  Google Scholar 

  • Daniels JC (2014) Conservation matters: status and conservation of the federally endangered Schaus swallowtail butterfly. News of the Lepidopterists’. Society 56:138–139

    Google Scholar 

  • Dennis RL, Hodgson JG, Grenyer R, Shreeve TG, Roy DB (2004) Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecol Entomol 29:12–26. doi:10.1111/j.1365-2311.2004.00572.x

    Article  Google Scholar 

  • Deyrup M (2016) Ants of Florida: identification and natural history. CRC Press, Boca Raton

    Book  Google Scholar 

  • Deyrup M, Davis L, Cover S (2000) Exotic ants in Florida. Trans Am Entomol Soc 126:293–326

    Google Scholar 

  • Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496. doi:10.1016/j.tree.2007.07.001

    Article  PubMed  Google Scholar 

  • Emmel TC, Minno MC, Nation JL Jr, Eliazar PJ, Cotter AJ, Bustamante EG, Ritland DB, Goode MR (1988) Habitat requirements and status of the endemic Schaus’ swallowtail in the Florida Keys. Final Project Report, Project Number GFC-86-023. Submitted to Florida Game and Fresh Water Fish Commission Division of Wildlife Nongame Wildlife Section, Tallahassee, Florida

  • Floren A, Biun A, Linsenmair KE (2002) Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131:137–144. doi:10.1007/s00442-002-0874-z

    Article  PubMed  Google Scholar 

  • Forys EA, Quistorff A, Allen CR (2001) Potential fire ant (Hymenoptera: Formicidae) impact on the endangered Schaus swallowtail (Lepidoptera: Papilionidae). Fla Entomol 84:254–258. doi:10.2307/3496176

    Article  Google Scholar 

  • Forys EA, Allen CR, Wojcik DP (2002) Influence of the proximity and amount of human development and roads on the occurrence of the red imported fire ant in the lower Florida Keys. Biol Conserv 108:27–33. doi:10.1016/S0006-3207(02)00086-1

    Article  Google Scholar 

  • Frankfater C, Tellez MR, Slattery M (2009) The scent of alarm: ontogenetic and genetic variation in the osmeterial gland chemistry of Papilio glaucus (Papilionidae) caterpillars. Chemoecology 19:81–96. doi:10.1007/s00049-009-0013-y

    CAS  Article  Google Scholar 

  • Gentry GL, Dyer LA (2002) On the conditional, nature of neotropical caterpillar defenses against their natural enemies. Ecology 83:3108–3119

    Article  Google Scholar 

  • Grieshop MJ, Werling B, Buehrer K, Perrone J, Isaacs R, Landis D (2012) Big brother is watching: studying insect predation in the age of digital surveillance. Am Entomol 58:172–182

    Article  Google Scholar 

  • Heinrich B (1993) How avian predators constrain caterpillar foraging. In: Stamp NE, Casey TM (eds) Caterpillars ecological and evolutionary constraints on foraging. Chapman and Hall, Inc., New York, pp 224–247

    Google Scholar 

  • Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233. doi:10.1146/annurev.ecolysis.33.010802.150444

    Article  Google Scholar 

  • Honda K (1983) Defensive potential of components of the larval osmeterial secretion of papilionid butterflies against ants. Physiol Entomol 8:173–179. doi:10.1111/j.1365-3032.1983.tb00346.x

    CAS  Article  Google Scholar 

  • IBM SPSS Statistics 22 (2013) Statistical Package for the social sciences version 22. http://www.ibm.com/analytics/us/en/technology/spss/.

  • Jameson A (2002) Host plants and habitats of the Schaus swallowtail butterfly (Papilio aristodemus ponceanus). MSc Thesis. University of Miami

  • Jeanne RL (1979) A latitudinal gradient in rates of ant predation. Ecology 60:1211–1224. doi:10.2307/1936968

    Article  Google Scholar 

  • Kaminski LA, Freitas AVL, Oliveira PS (2010) Interaction between mutualisms: ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am Nat 176:322–334. doi:10.1086/655427

    Article  PubMed  Google Scholar 

  • King JR, Tschinkel WR (2006) Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. J Anim Ecol 75:1370–1378. doi:10.1111/j.1365-2656.2006.01161.x

    Article  PubMed  Google Scholar 

  • Koptur S (1992) Plants with extrafloral nectaries and ants in Everglades habitats. Fla Entomol 75:38–50. doi:10.2307/3495479

    Article  Google Scholar 

  • Koptur S, Rico-Gray V, Palacios-Rios M (1998) Ant protection of the nectaried fern Polypodium plebeium in central Mexico. Am J Bot 85:736–739. doi:10.2307/2446544

    CAS  Article  PubMed  Google Scholar 

  • Krushelnycky PD, Holway DA, Lebrun EG (2010) Invasion processes and causes of success. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 245–260

    Google Scholar 

  • Lach L, Hooper-Bùi LM (2010) Consequences of ant invasions. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, New York, pp 261–286

    Google Scholar 

  • Lach L, Volp TM, Greenwood TA, Rose A (2016) High invasive ant activity drives predation of a native butterfly larva. Biotropica 48:146–149. doi:10.1111/btp.12284

    Article  Google Scholar 

  • Loftus W, Kushlan J (1984) Population fluctuations of the Schaus swallowtail (Lepidoptera: Papilionidae) on the islands of Biscayne Bay, Florida, with comments on the Bahaman swallowtail. Fla Entomol 67:277–287. doi:10.2307/3493950

    Article  Google Scholar 

  • Lopez R, Potter DA (2000) Ant predation on eggs and larvae of the black cutworm (Lepidoptera: Noctuidae) and Japanese beetle (Coleoptera: Scarabaeidae) in turfgrass. Environ Entomol 29:116–125. doi:10.1603/0046-225X-29.1.116

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group, Auckland

    Google Scholar 

  • Lubertazzi D, Tschinkel WR (2003) Ant community change across a ground vegetation gradient in north Florida’s longleaf pine flatwoods. J Insect Sci 3:1–17. doi:10.1093/jis/3.1.21

    Article  Google Scholar 

  • MacGowan JC, Hill JG (2010) Two new exotic pest ants, Pseudomyrmex gracilis and Monomorium floricola (Hymenoptera: Formicidae) collected in Mississippi. Midsouth Entomol 3:106–109

    Google Scholar 

  • Mack MC, D’Antonio CM (1998) Impacts of biological invasions on disturbance regimes. Trends Ecol Evol 13:195–198. doi:10.1016/S0169-5347(97)01286-X

    CAS  Article  PubMed  Google Scholar 

  • Mathew G, Anto M (2007) In situ conservation of butterflies through establishment of butterfly gardens: a case study at Peechi, Kerala, India. Curr Sci 93:337–347

    Google Scholar 

  • McGlynn TP (1999) The worldwide transport of ants: geographic distribution and ecological invasions. J Biogeogr 26:535–548. doi:10.1046/j.1365-2699.1999.00310.x

    Article  Google Scholar 

  • Mestre L, Piñol J, Barrientos JA, Espadaler X (2016) Differential ant exclusion from canopies shows contrasting top-down effects on community structure. Oecologia 180:190–203. doi:10.1007/s00442-015-3442-z

    Article  Google Scholar 

  • Minno MC (2015) 2015 Schaus’ swallowtail (Heraclides aristodemus ponceanus) monitoring on Key Largo, Florida. South Lepidopterists News 37:106–107

    Google Scholar 

  • Minno MC, Emmel TC (1992) Larval protective coloration in swallowtails from the Florida Keys. Trop Lepidoptera 3:47–49

    Google Scholar 

  • Minno MC, Emmel TC (1993) Butterflies of the Florida Keys. Scientific Publishers, Gainesville

    Google Scholar 

  • Montllor CB, Bernays EA (1993) Invertebrate predators and caterpillar foraging. In: Stamp NE, Casey TM (eds) Caterpillars ecological and evolutionary constraints on foraging. Chapman and Hall, Inc., New York, pp 170–202

    Google Scholar 

  • Morais HR, Diniz IR, Silva D (1999) Caterpillar seasonality in a central Brazilian Cerrado. Rev Biol Trop 47:1025–1033

    Google Scholar 

  • Moreau CS, Deyrup MA, Davis LR (2014) Ants of the Florida Keys: species accounts, biogeography, and conservation (Hymenoptera: Formicidae). J Insect Sci 14:295. doi:10.1093/jisesa/ieu157

    Article  PubMed  Google Scholar 

  • Nafus DM (1993) Movement of introduced biological-control agents onto nontarget butterflies, Hypolimnas spp. (Lepidoptera, Nymphalidae). Environ Entomol 22:265–272

    Article  Google Scholar 

  • Oi DH, Watson CA, Williams DF (2004) Monitoring and management of red imported fire ants in a tropical fish farm. Fla Entomol 87:522–527. doi:10.1653/0015-4040(2004)087[0522:MAMORI]2.0.CO;2

    Article  Google Scholar 

  • Oliveira PS, Freitas AVL (2004) Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 91:557–570. doi:10.1007/s00114-004-0585-x

    CAS  Article  PubMed  Google Scholar 

  • Oliveira PS, Oliveira-Filho AT, Cintra R (1987) Ant foraging on ant-inhabited Triplaris (Polygonaceae) in western Brazil: a field experiment using live termite-baits. J Trop Ecol 3:193–200

    Article  Google Scholar 

  • Plentovich S, Swenson C, Reimer NJ, Richardson M, Garon N (2010) The effects hydramethylnon on the tropical fire ants (Solenopsis geminata) and non-target arthropods on Spit Island, Midway Atoll. J Insect Conserv 14:459–465. doi:10.1007/s10841-010-9274-6

    Article  Google Scholar 

  • Porter SD, Savignano DA (1990) Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71:2095–2106. doi:10.2307/1938623

    Article  Google Scholar 

  • Possley J, Hodges S, Magnaghi E, Maschinski J (2016) Distribution of Croton linearis in Miami-Dade County preserves with potential for supporting the federally endangered butterflies Strymon acis bartrami and Anaea troglodyta floridalis. Nat Area J 36:81–87

    Article  Google Scholar 

  • Reavey D (1993) Why body size matters to caterpillars. In: Stamp NE, Casey TM (eds) Caterpillars ecological and evolutionary constraints on foraging. Chapman and Hall, Inc., New York, pp 248–278

    Google Scholar 

  • Remmel T, Tammaru T, Magi M (2009) Seasonal mortality trends in tree-feeding insects: a field experiment. Ecol Entomol 34:98–106. doi:10.1111/j.1365-2311.2008.01044.x

    Article  Google Scholar 

  • Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Aust Ecol 28:305–314. doi:10.1046/j.1442-9993.2003.01290.x

    Article  Google Scholar 

  • Saarinen EV, Daniels JC (2006) Miami blue butterfly larvae (Lepidoptera: Lycaenidae) and ants (Hymenoptera: Formicidae): new information on the symbionts of an endangered taxon. Fla Entomol 89:69–74. doi:10.1653/0015-4040(2006)89[69:MBBLLL]2.0.CO;2

    Article  Google Scholar 

  • Salazar JC, Whitman DC (2001) Defensive tactics of caterpillars against predators and parasitoids. In: Ananthakrishnan TN (ed) Insects and plant defence dynamics. Science Publishers, Inc., Plymouth, pp 161–207

    Google Scholar 

  • Salvato M (2008) Investigator’s annual report to Biscayne National Park: Annual butterfly survey on Elliott Key for the North American Butterfly Association. Fish and Wildlife Service, Vero Beach, FL.

  • Sam K, Remmel T, Molleman F (2015) Material affects attack rates on dummy caterpillars in tropical forest where arthropod predators dominate: an experiment using clay and dough dummies with green colourants on various plant species. Entomol Exp Appl 157:317–324. doi:10.1111/eea.12367

    Article  Google Scholar 

  • Schoener TW, Spiller DA, Losos JB (2001) Predators increase the risk of catastrophic extinction of prey populations. Nature 412:183–186. doi:10.1038/35084071

    CAS  Article  PubMed  Google Scholar 

  • Seifert CL, Lehner L, Adams M, Fiedler K (2015) Predation on artificial caterpillars is higher in countryside than near-natural forest habitat in lowland south-western Costa Rica. J Trop Ecol 31:281–284. doi:10.1017/S0266467415000012

    Article  Google Scholar 

  • Seifert CL, Schulze CH, Dreschke CT, Frötscher H, Fiedler K (2016) Day vs. night predation on artificial caterpillars in primary rainforest habitats—an experimental approach. Entomol Exp Appl 158:54–59. doi:10.1111/eea.12379

    Article  Google Scholar 

  • Sendoya SF, Oliveira PS (2015) Ant–caterpillar antagonism at the community level: Interhabitat variation of tritrophic interactions in a neotropical savanna. J Anim Ecol 84:442–452. doi:10.1111/1365-2656.12286

    Article  PubMed  Google Scholar 

  • Sendoya SF, Blüthgen N, Tamashiro JY, Fernandez F, Oliveira PS (2016) Foliage-dwelling ants in a neotropical savanna: effects of plant and insect exudates on ant communities. Arthropod-Plant Interact 10:183–195. doi:10.1007/s11829-016-9423-2

  • Smiley JT (1985) Heliconius caterpillar mortality during establishment on plants with and without attending ants. Ecology 66:845–849. doi:10.2307/1940546

    Article  Google Scholar 

  • Snyder JR, Herndon A, Robertson WBJ (1990) South Florida Rockland. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida. University Press of Florida, Gainesville, pp 230–277

    Google Scholar 

  • Stireman JO, Greeney HF, Dyer LA (2009) Species richness and host associations of Lepidoptera-attacking Tachinidae in the northeast Ecuadorian Andes. J Insect Sci 9:1–19

    Article  Google Scholar 

  • Summerlin JC, Hung ACF, Vinson SB (1977) Residues in nontarget ants, species simplification and recovery of populations following aerial applications of mirex. Environ Entomol 6:193–197

    CAS  Article  Google Scholar 

  • Tilman D (1978) Cherries, ants and tent caterpillars: timing of nectar production in relation to susceptibility of caterpillars to ant predation. Ecology 59:686–692. doi:10.2307/1938771

    Article  Google Scholar 

  • Timms LL, Schwarzfeld M, Saaksjarvi IE (2016) Extending understanding of latitudinal patterns in parasitoid wasp diversity. Insect Conserv Divers 9:74–86. doi:10.1111/icad.12144

    Article  Google Scholar 

  • Tobin JE (1995) Ecology and diversity of tropical forest canopy ants. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic Press, New York, pp 129–147

    Google Scholar 

  • Tschinkel WR (1988) Distribution of the fire ants Solenopsis invicta and S. geminata (Hymenoptera: Formicidae) in northern Florida in relation to habitat and disturbance. Ann Entomol Soc Am 81:76–81

    Article  Google Scholar 

  • Tschinkel WR (2006) The fire ants. The Belknap Press of Harvard University Press, Massachusetts

    Google Scholar 

  • United States Fish and Wildlife Service (FWS) (2008) Schaus swallowtail butterfly (Heraclides aristodemus ponceanus) 5-Year review: Summary and evaluation. http://ecos.fws.gov/docs/five_year_review/doc1983.pdf. Accessed 11 Nov 2016.

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

  • Wagner DL, Van Driesche RG (2010) Threats posed to rare and endangered insects by invasions of nonnative species. Annu Rev Entomol 55:547–568. doi:10.1146/annurev-ento-112408-085516

    CAS  Article  PubMed  Google Scholar 

  • Wang CL, Strazanac J, Butler L (2001) A comparison of pitfall traps for studying leaf litter ant communities. J Econ Entomol 94:761–765. doi:10.1603/0022-0493-94.3.761

    CAS  Article  PubMed  Google Scholar 

  • Watanabe M (1981) Population dynamics of the swallowtail butterfly, Papilio xuthus L., in a deforested area. Res. Popul Ecol 23:74–93. doi:10.1007/BF02514094

    Article  Google Scholar 

  • Weseloh RM (1993) Potential effects of parasitoids on the evolution of caterpillar foraging behavior. In: Stamp NE, Casey TM (eds) Caterpillars ecological and evolutionary constraints on foraging. Chapman and Hall, Inc., New York, pp 203–223

    Google Scholar 

  • Wetterer JK (2010) Worldwide spread of the graceful twig ant, Pseudomyrmex gracilis (Hymenoptera: Formicidae). Fla Entomol 93:535–540. doi:10.1653/024.093.0410

    Article  Google Scholar 

  • Wetterer JK, Porter SD (2003) The little fire ant, Wasmannia auropunctata: distribution, impact, and control. Sociobiology 42:1–41

    Google Scholar 

  • Whelan KRT (2011) Schaus swallowtail butterfly (Heraclides aristodemus ponceanus) habitat enhancement in Biscayne National Park. Project Report. Funded by FWS South Florida Coastal Program. National Park Service, Palmetto Bay, Florida

  • Whelan KRT, Atkinson A (2015) Schaus Swallowtail Butterfly (Heraclides aristodemus ponceanus) Habitat Enhancement in Biscayne National Park. South Florida Coastal Program Project Progress Report. NPS/SFCN. National Park Service, Palmetto Bay, Florida

  • Whelan KRT, Ruiz PL, Shamblin RB, Houle PA, Ross MS, Atkinson AJ, Patterson JM, Alonso J (2013) Biscayne National Park Vegetation Map Project. Natural Resource Technical Report. NPS/SFCN/NRTR-2013/774. National Park Service, Fort Collins, Colorado

    Google Scholar 

  • Whitcomb WH, Denmark HA, Buren WF, Carroll JF (1972) Habits and present distribution in Florida of the exotic ant, Pseudomyrmex mexicanus (Hymenoptera: Formicidae). Fla Entomol 55:31–33. doi:10.2307/3493638

    Article  Google Scholar 

  • Williams DF (1994) Biology, impact, and control of introduced species. Westview Press, Boulder

    Google Scholar 

  • Williams DF, Collins HL, Oi DH (2001) The red imported fire ant (Hymenoptera: Formicidae): an historical perspective of treatment programs and the development of chemical baits for control. Am Entomol 47:146–159

    Article  Google Scholar 

  • Zettler JA, Taylor MD, Allen CR, Spira TP (2004) Consequences of forest clear-cuts for native and non-indigenous ants (Hymenoptera: Formicidae). Ann Entomol Soc Am 97:513–518. doi:10.1603/0013-8746(2004)097[0513:COFCFN]2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

We thank Vicente Martinez, Shane Harrington, and Steve Newman for their support and transportation to the islands. The support and cooperation of Biscayne National Park and the National Park Service staff were essential in project development to completion. We greatly appreciate field assistance from many, including Leslie Bayas, Lydia Cuni, Darlene Darrican, Michael Foguer, Tanjim Hossain, Eduardo Ibarra, Craig Perry, Brenda Riveria, Andrea Salas, Adriana Samani, and Yadira Reynaldo. Identification of difficult ant specimens was provided by Mark Deyrup. Paulo Oliveira provided invaluable information and guidance on the ant-caterpillar interaction study. Constructive comments on the manuscript were made by Ian Jones and Scott Zona. Permission to work in Biscayne National Park was granted through the scientific research and collecting permit # BISC – 2014 – SCI – 0031. This is contribution #344 to the Tropical Biology Program at Florida International University.

Funding

This study was financially supported through the Zoo Miami Conservation and Research Grant and the Kelly Foundation Botany Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeson Clayborn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Data Availability

The data are in the process of being archived in Dryad Digital Respository.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clayborn, J., Koptur, S. Mortal combat between ants and caterpillars: an ominous threat to the endangered Schaus swallowtail butterfly (Heraclides aristodemus ponceanus) in the Florida Keys, USA. J Insect Conserv 21, 689–702 (2017). https://doi.org/10.1007/s10841-017-0012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-0012-1

Keywords

  • Formicidae
  • Florida keys
  • Invasive species
  • Papilionidae
  • Predator–prey interactions
  • Subtropical dry forests