Advertisement

Journal of Insect Conservation

, Volume 21, Issue 3, pp 411–422 | Cite as

Population demography of the endangered large blue butterfly Maculinea arion in Europe

  • Márta Osváth-Ferencz
  • Simona Bonelli
  • Piotr Nowicki
  • László Peregovits
  • László Rákosy
  • Marcin Sielezniew
  • Agata Kostro-Ambroziak
  • Izabela Dziekańska
  • Ádám KőrösiEmail author
ORIGINAL PAPER

Abstract

Demographic parameters such as survival, sex ratio and abundance can profoundly affect the viability of populations and thus are of primary importance in species of conservation concern. Although numerous studies have been published on certain aspects of the ecology and evolution of the endangered Large Blue butterfly Maculinea arion, there is still a lack of detailed knowledge on its populations’ demography. Moreover, M. arion populates a variety of xerothermic habitats throughout its European range using various food plants and host ants, which leads to complications in its conservation. Our aim was to estimate demographic parameters of M. arion populations in different parts of its European range. Detailed mark-recapture sampling was conducted on populations in four different countries. We often found that daily apparent survival probability declined with increasing age of individuals, but there was no difference between male and female survival. In smaller populations, the sex ratio was rather female-biased. Our most interesting result was the lack of protandry in some populations that might be a consequence of selection against reproductive asynchrony in small populations or a polyandrous mating system. The perfect coincidence of male and female phenology can positively affect the effective population size, because the lack of reproductive asynchrony increases the chance of male–female encounters. Abundance of the studied populations ranged between 100 and 1,600 individuals, smaller populations were on the verge of extinction. Habitat of the threatened small populations was either overgrazed or abandoned, while habitat of larger, stable populations was lightly grazed.

Keywords

Age-dependent survival Distributional range Mark-recapture Protandry Sex ratio 

Notes

Acknowledgements

We are grateful to Joanna Chołostiakow-Gromek, Ferenc Kassai, Paul Kirkland, Aleksandra Mieczkowska, Gyöngyvér Molnár, Henrietta Onodi, Gergely Osváth, Noémi Örvössy, Szabolcs Sáfián and Michał Włostowski for their help in fieldwork. We thank Annamária Fenesi for her help in the characterization of the vegetation of the Romanian study site. We are indebted to Zsolt Czekes for his help in manuscript preparation, and Jacqueline Loos and Bálint Markó for discussions. Tibor-Csaba Vizauer offered important information regarding the Romanian study site for which we are thankful. M.O-F.’s work was supported by the grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, project number PN-II-RU-TE-2014-4-1930 and by the “Dr. Verestóy Attila Foundation”. Furthermore, the study was also funded by the Polish National Science Centre Grant DEC-2013/11/B/NZ8/00912 and the EU ‘MacMan’ project (EVK2-CT-2001-00126).

Supplementary material

10841_2016_9944_MOESM1_ESM.pdf (100 kb)
Supplementary material 1 (PDF 100 KB)
10841_2016_9944_MOESM2_ESM.txt (73 kb)
Supplementary material 2 (TXT 73 KB)

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) 2nd international symposium on information theory, Tsahkadsor, Armenia, USSR, September 2–8, 1971. Akadémiai Kiadó, Budapest, pp 267–281Google Scholar
  2. Baguette M (2004) The classical metapopulation theory and the real, natural world: a critical appraisal. Basic Appl Ecol 5:213–224. doi: 10.1016/j.baae.2004.03.001 CrossRefGoogle Scholar
  3. Baguette M, Schtickzelle N (2003) Local population dynamics are important to the conservation of metapopulations in highly fragmented landscapes. J Appl Ecol 40:404–412. doi: 10.1046/j.1365-2664.2003.00791.x CrossRefGoogle Scholar
  4. Balletto E, Bonelli S, Settele J, Thomas JA, Verovnik R, Wahlberg N (2010) Case 3508 Maculinea Van Eecke, 1915 (Lepidoptera: LYCAENIDAE): proposed precedence over Phengaris Doherty, 1891. Bull Zool Nomencl 67:129–132CrossRefGoogle Scholar
  5. Ban Y, Kiritani K, Miyai S, Nozato K (1990) Studies on ecology and behavior of Japanese black swallowtail butterflies. VIII. Survivorship curves of adult male populations in Papilio helenus nicconicolens Butler and P. protenor demetrius Cramer (Lepidoptera: Papilionidae). Appl Ent Zool 25:409–414Google Scholar
  6. Bereczki J, Tóth JP, Sramkó G, Varga Z (2014) Multilevel studies on the two phenological forms of large blue (Maculinea arion) (Lepidoptera: Lycaenidae). J Zool Syst Evol Res 52:32–43. doi: 10.1111/jzs.12034 CrossRefGoogle Scholar
  7. Bereczki J, Rácz R, Varga Z, Tóth JP (2015) Controversal patterns of Wolbachia infestation in the social parasitic Maculinea butterflies (Lepidoptera: Lycaenidae). Org Divers Evol 15:591–607. doi: 10.1007/s13127-015-0217-7 CrossRefGoogle Scholar
  8. Boggs C (2009) Understanding insect life histories and senescence through a resource allocation lens. Funct Ecol 23:27–37. doi: 10.1111/j.1365-2435.2009.01527.x CrossRefGoogle Scholar
  9. Bonelli S, Vrabec V, Witek M, Barbero F, Patricelli D, Nowicki P (2013) Selection on dispersal in isolated butterfly metapopulations. Pop Ecol 55:469–478. doi: 10.1007/s10144-013-0377-2 CrossRefGoogle Scholar
  10. Brakefield PM (1982) Ecological studies on the butterfly Maniola jurtina in Britain. II. Population dynamics: the present position. J Anim Ecol 51:727–738. http://www.jstor.org/stable/4001. Accessed 13 Oct 2011
  11. Bridle JR, Buckley J, Bodsworth EJ, Thomas CD (2014) Evolution on the move: specialization on widespread resources associated with rapid range expansion in response to climate change. Proc R Soc B 281:20131800. doi: 10.1098/rspb.2013.1800 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, BerlinGoogle Scholar
  13. Calabrese JM, Fagan WF (2004) Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am Nat 164:25–37. doi: 10.1086/421443 CrossRefPubMedGoogle Scholar
  14. Calabrese JM, Ries L, Matter SF, Debinski DM, Auckland JN, Roland J, Fagan WF (2008) Reproductive asynchrony in natural butterfly populations and its consequences for female matelessness. J Anim Ecol 77:746–756. doi: 10.1111/j.1365-2656.2008.01385.x CrossRefPubMedGoogle Scholar
  15. Casacci LP, Witek M, Barbero F, Patricelli D, Solazzo G, Balletto E, Bonelli S (2011) Habitat preferences of Maculinea arion and its Myrmica host ants: implications for habitat management in Italian Alps. J Insect Conserv 15:103–110. doi: 10.1007/s10841-010-9327-x CrossRefGoogle Scholar
  16. Cassel-Lundhagen A, Tammaru T, Windig JJ, Ryrholm N, Nylin S (2009) Are peripheral populations special? Congruent patterns in two butterfly species. Ecography 32:591–600. doi: 10.1111/j.1600-0587.2008.05685.x CrossRefGoogle Scholar
  17. Davies ZG, Wilson RJ, Brereton TM, Thomas CD (2005) The re-expansion and improving status of the silver-spotted skipper butterfly (Hesperia comma) in Britain: a metapopulation success story. Biol Conserv 124:189–198. doi: 10.1016/j.biocon.2005.01.029 CrossRefGoogle Scholar
  18. Harrington LC, Francoisevermeylen, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW (2008) Age-dependent survival of the Dengue vector Aedes aegypti (Diptera: Culicidae) demonstrated by simultaneous release-recapture of different age cohorts. J Med Entomol 45:307–313. doi: 10.1603/0022-2585(2008)45[307:ASOTDV]2.0.CO;2 CrossRefPubMedGoogle Scholar
  19. Hawlena H, Abramsky Z, Krasnov BR (2006) Ectoparasites and age-dependent survival in a desert rodent. Oecologia 148:30–39CrossRefPubMedGoogle Scholar
  20. Hayes MP (2015) The biology and ecology of the large blue butterfly Phengaris (Maculinea) arion: review. J Insect Conserv 19:1037–1051. doi: 10.1007/s10841-015-9820-3 CrossRefGoogle Scholar
  21. Hill JK, Griffiths HM, Thomas CD (2011) Climate change and evolutionary adaptations at species’ range margins. Ann Rev Entomol 56:143–159. doi: 10.1146/annurev-ento-120709-144746 CrossRefGoogle Scholar
  22. Hurvich CM, Tsai C (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. doi: 10.1093/biomet/76.2.297 CrossRefGoogle Scholar
  23. Kuussaari M, Saccheri I, Camara M, Hanski I (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 82:384–392. doi: 10.2307/3546980 CrossRefGoogle Scholar
  24. Laake JL (2013) Rmark: an R interface for analysis of capture-recapture data with MARK. AFSC processed report, Alaska Fish. Sci. Cent. NOAA, Seattle, p 25Google Scholar
  25. Larsen E, Calabrese JM, Rhainds M, Fagan WF (2013) How protandry and protogyny affect female mating failure: a spatial population model. Entomol Exp Appl 146:130–140. doi: 10.1111/eea.12003 CrossRefGoogle Scholar
  26. Lebeau J, Wesselingh RA, Van Dyck H (2016) Floral resource limitation severely reduces butterfly survival, condition and flight activity in simplified agricultural landscapes. Oecologia 180:421–427. doi: 10.1007/s00442-015-3492-2 CrossRefPubMedGoogle Scholar
  27. Martin K (1995) Patterns and mechanisms for age-dependent reproduction and survival of birds. Am Zool 35:340–348. doi: 10.1093/icb/35.4.340 CrossRefGoogle Scholar
  28. Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103. doi: 10.1038/nature06922 CrossRefPubMedGoogle Scholar
  29. Mennechez G, Schtickzelle N, Baguette M (2003) Metapopulation dynamics of the bog fritillary butterfly: comparison of demographic parameters and dispersal between a continuous and a highly fragmented landscape. Landsc Ecol 18:279–291. doi: 10.1023/A:1024448829417 CrossRefGoogle Scholar
  30. Moritz C, Langham G, Kearney M, Krockenberger A, Van-DerWal J, Williams S (2012) Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards. Philos Trans R Soc B 367:1680–1687. doi: 10.1098/rstb.2012.0018s CrossRefGoogle Scholar
  31. Mouquet N, Thomas JA, Elmes GW, Clarke RT, Hochberg ME (2005) Population dynamics and conservation of a specialized predator: a case study of Maculinea arion. Ecol Monogr 75:525–542. doi: 10.1890/05-0319 CrossRefGoogle Scholar
  32. Munguira ML, Martin J (1999) Action plans for Maculinea butterflies in Europe. Nature and Environment 97. Council of Europe Publishing, StrasbourgGoogle Scholar
  33. Nowicki P, Richter A, Glinka U, Holzschuh A, Toelke U, Henle K, Woyciechowski M, Settele J (2005a) Less input same output: simplified approach for population size assessment in Lepidoptera. Pop Ecol 47:203–212. doi: 10.1007/s10144-005-0223-2 CrossRefGoogle Scholar
  34. Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M (2005b) Population ecology of the endangered butterflies Maculinea teleius and M. nausithous, and its implications for conservation. Pop Ecol 47:193–202. doi: 10.1007/s10144-005-0222-3 CrossRefGoogle Scholar
  35. Nowicki P, Pepkowska A, Kudlek J, Skórka P, Witek M, Settele J, Woyciechowski M (2007) From metapopulation theory to conservation recommendations: Lessons from spatial occurence and abundence patterns of Maculinea butterflies. Biol Conserv 140:119–129. doi: 10.1016/j.biocon.2007.08.001 CrossRefGoogle Scholar
  36. Örvössy N, Kőrösi Á, Batáry P, Vozár Á, Peregovits L (2013) Potential metapopulation structure and the effects of habitat quality on population size of the endangered False Ringlet butterfly. J Insect Conserv 17:537–547. doi: 10.1007/s10841-012-9538-4 CrossRefGoogle Scholar
  37. Pajari M (1992) Muurahaissinisiiven (Maculinea arion (L.)) populaatiokoon arviointi ja habitaattivaatimusten tutkiminen kesällä 1990 Pohjois-Karjalan Liperissä. [An estimation of the population size and habitat demands of Maculinea arion during the summer of 1990 in Liperi, North Karelia.] Graduate thesis, University of JoensuuGoogle Scholar
  38. Patricelli D, Sielezniew M, Ponikwicka-Tyszko D, Ratkiewicz M, Bonelli S, Barbero F, Witek M, Bus MM, Rutkowski R, Balletto E (2013) Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by Wolbachia. BMC Evol Biol 13:14. doi: 10.1186/1471-2148-13-14 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pauler R, Kaule G, Verhaagh M, Settele J (1995). Untersuchungen zur Autökologie des Schwarzgefleckten Ameisenbläulings Maculinea arion LINNAEUS 1758 (Lepidoptera: Lycaenidae) in Südwest- Deutschland. Nachrichten des Entomologischen Vereins Apollo 16:147–186Google Scholar
  40. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 14 Apr 2016
  41. Schtickzelle N, Le Boulengé E, Baguette M (2002) Metapopulation dynamics of the bog fritillary butterfly: demographic processes in a patchy population. Oikos 97:349–360. doi: 10.1034/j.1600-0706.2002.970305.x CrossRefGoogle Scholar
  42. Schtickzelle N, Choutt J, Goffart P, Fichefet V, Baguette M (2005) Metapopulation dynamics and conservation of the marsh fritillary butterfly: population viability analysis and management options for a critically endangered species in Western Europe. Biol Conserv 126:569–581. doi: 10.1016/j.biocon.2005.06.030 CrossRefGoogle Scholar
  43. Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52:860–873. doi: 10.2307/2533048 CrossRefGoogle Scholar
  44. Settele J, Kühn E, Thomas J (eds) (2005) Studies on the ecology and conservation of butterflies in Europe. vol 2. Species ecology along a European Gradient: Maculinea butterflies as a model. Pensoft Publishers, Sofia-MoscowGoogle Scholar
  45. Sielezniew M, Stankiewicz AM (2008) Myrmica sabuleti (Hymenoptera: Formicidae) not necessary for the survival of the population of Phengaris (Maculinea) arion (Lepidoptera: Lycaenidae) in eastern Poland: Lower host-ant specificity or evidence for geographical variation of an endangered social parasite? Eur J Entomol 105:637–641. doi: 10.14411/eje.2008.086 CrossRefGoogle Scholar
  46. Sielezniew M, Włostowski M, Dziekańska I (2010a) Myrmica schencki (Hymenoptera: Formicidae) as the Primary Host of Phengaris (Maculinea) arion (Lepidoptera: Lycaenidae) at Heathlands in Eastern Poland. Sociobiology 55:1–12Google Scholar
  47. Sielezniew M, Patricelli D, Dziekańska I, Barbero F, Bonelli S, Casacci LP, Witek M, Balletto E (2010b) The first record of Myrmica lonae (Hymenoptera: Formicidae) as a host of the socially parasitic large blue butterfly Phengaris (Maculinea) arion (Lepidoptera: Lycaenidae). Sociobiology 56:465–475Google Scholar
  48. Sielezniew M, Dziekańska I, Stankiewicz-Fiedurek AM (2010c) Multiple host-ant use by the predatory social parasite Phengaris (=Maculinea) arion (Lepidoptera, Lycaenidae). J Insect Conserv 14:141–149. doi: 10.1007/s10841-009-9235-0 CrossRefGoogle Scholar
  49. Sielezniew M, Patricelli D, Rutkowski R, Witek M, Bonelli S, Buś MM (2015) Population genetics of the endangered obligatorily myrmecophilous butterfly Phengaris (=Maculinea) arion in two areas of its European range. Insect Conserv Diver 8:505–516. doi: 10.1111/icad.12129 CrossRefGoogle Scholar
  50. Spitzer L, Benes J, Dandova J, Jaskova V, Konvicka M (2009) The large blue butterfly, Phengaris [Maculinea] arion, as a conservation umbrella on a landscape scale: The case of the Czech Carpathians. Ecol Indic 9:1056–1063. doi: 10.1016/j.ecolind.2008.12.006 CrossRefGoogle Scholar
  51. Szentirmai I, Mesterházy A, Varga I, Schubert Z, Sándor LC, Ábrahám L, Kőrösi Á (2014) Habitat use and population biology of the Danube Clouded Yellow butterfly Colias myrmidone (Lepidoptera: Pieridae) in Romania. J Insect Conserv 18:417–425. doi: 10.1007/s10841-014-9651-7 CrossRefGoogle Scholar
  52. Tax MH (1989) Atlas van de Nederlandse Dagvlinders. De Vlinderstichting, Wageningen and Stichting tot Behoud van Natuurmonumenten, s’-GravelandGoogle Scholar
  53. Thomas JA (1995) The ecology and conservation of Maculinea arion and other European species of large blue butterfly. In: Pullin AS (ed) Ecology and conservation of butterflies. Chapman and Hall, London, pp 180–197CrossRefGoogle Scholar
  54. Thomas JA, Clarke RT, Elmes GW, Hochberg ME (1998b) Population dynamics in the genus Maculinea (Lepidoptera: Lycaenidae). In: Dempster JP, McLean IFG (eds) Insect population in theory and in practice. Chapman and Hall, London, pp 261–290. doi: 10.1007/978-94-011-4914-3_11 CrossRefGoogle Scholar
  55. Thomas JA, Elmes GW, Wardlaw JC, Woyciechowski M (1989) Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia 85:87–91. doi: 10.1007/BF00378660 CrossRefGoogle Scholar
  56. Thomas JA, Simcox DJ, Wardlaw JC, Elmes GW, Hochberg ME, Clarke RT (1998a) Effects of latitude, altitude and climate on the habitat and conservation of the endangered butterfly Maculinea arion and its Myrmica ant hosts. J Insect Conserv 2:39–46. doi: 10.1023/A:1009640706218 CrossRefGoogle Scholar
  57. Thomas JA, Simcox DJ, Clarke RT (2009) Successful conservation of a threatened Maculinea butterfly. Science 325:80–83. doi: 10.1126/science.1175726 CrossRefPubMedGoogle Scholar
  58. Thomas JA, Simcox DJ, Hovestadt T (2011) Evidence based conservation of butterflies. J Insect Conserv 15:241–258. doi: 10.1007/s10841-010-9341-z CrossRefGoogle Scholar
  59. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881. doi: 10.1126/science.1095046 CrossRefPubMedGoogle Scholar
  60. Thomas JA, Wardlaw JC (1992) The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91:101–109. doi: 10.1007/BF00317247 CrossRefPubMedGoogle Scholar
  61. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300. doi: 10.1016/j.cub.2005.12.038 CrossRefPubMedGoogle Scholar
  62. Van Swaay CAM, Warren M (1999) Red data book of European butterflies (Rhopalocera). Nature and environment 99. Council of Europe Publishing, StrasbourgGoogle Scholar
  63. Van Swaay CAM, Cuttelod A, Collins S, Maes D, Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg. doi: 10.2779/83897 Google Scholar
  64. Vande Velde L, Van Dyck H (2013) Lipid economy, flight activity and reproductive behaviour in the speckled wood butterfly: on the energetic cost of territory holding. Oikos 122:555–562. doi: 10.1111/j.1600-0706.2012.20747.x CrossRefGoogle Scholar
  65. Vilbas M, Teder T, Tiitsaar A, Kaasik A, Esperk T (2015) Habitat use of the endangered parasitic butterfly Phengaris arion close to its northern distribution limit. Insect Conserv Diver 8:252–260. doi: 10.1111/icad.12104 CrossRefGoogle Scholar
  66. Vlasanek P, Hauck D, Konvicka M (2009) Adult sex ratio in the Parnassius mnemosyne butterfly: effects of survival, migration, and weather. Isr J Ecol Evol 55:233–252. doi: 10.1560/IJEE.55.3.233 CrossRefGoogle Scholar
  67. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. doi: 10.1038/nrmicro1969 CrossRefPubMedGoogle Scholar
  68. White GC, Burnham KP (1999) Program MARK: Survival estimation from populations of marked animals. Bird Study 46:120–138. doi: 10.1080/00063659909477239 CrossRefGoogle Scholar
  69. Wiklund C, Fagerström T (1977) Why do males emerge before females? Oecologia 31:153–158. doi: 10.1007/BF00346917 CrossRefPubMedGoogle Scholar
  70. Wilson RJ, Thomas CD (2002) Dispersal and the spatial dynamics of butterfly populations. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology. Cambridge University Press, Cambridge, pp 257–278Google Scholar
  71. Witek M, Barbero F, Markó B (2014) Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc 61:307–323. doi: 10.1007/s00040-014-0362-6 CrossRefGoogle Scholar
  72. Wynhoff I (1998) The recent distribution of the European Maculinea species. J Insect Conserv 2:15–27. doi: 10.1023/A:1009636605309 CrossRefGoogle Scholar
  73. Zheng C, Ovaskainen O, Saastamoinen M, Hanski I (2007) Age-dependent survival analyzed with Bayesian models of mark-recapture data. Ecology 88:1970–1976. doi: 10.1890/06-1246.1 CrossRefPubMedGoogle Scholar
  74. Zimmermann K, Fric Z, Filipová L, Konvička M (2005) Adult demography, dispersal and behaviour of Brenthis ino (Lepidoptera: Nymphalidae): how to be a successful wetland butterfly. Eur J Entomol 102:699–706. doi: 10.14411/eje.2005.100 CrossRefGoogle Scholar
  75. Zimmermann K, Blazkova P, Cizek O, Fric Z, Hula V, Kepka P, Novotny D, Slamova I, Konvička M (2011) Demography of adults of the Marsh fritillary butterfly, Euphydryas aurinia (Lepidoptera: Nymphalidae) in the Czech Republic: Patterns across sites and seasons. Eur J Entomol 108:243–254. doi: 10.14411/eje.2011.033 CrossRefGoogle Scholar
  76. Zonneveld C, Metz JAJ (1991) Models on butterfly protandry: virgin females are at risk to die. Theor Pop Biol 40:308–321. doi: 10.1016/0040-5809(91)90058-N CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Márta Osváth-Ferencz
    • 1
    • 3
  • Simona Bonelli
    • 2
  • Piotr Nowicki
    • 3
  • László Peregovits
    • 4
  • László Rákosy
    • 5
  • Marcin Sielezniew
    • 6
  • Agata Kostro-Ambroziak
    • 6
  • Izabela Dziekańska
    • 7
  • Ádám Kőrösi
    • 8
    Email author
  1. 1.Hungarian Department of Biology and EcologyBabeș-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of Life Sciences and Systems BiologyTurin UniversityTurinItaly
  3. 3.Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
  4. 4.Department of ZoologyHungarian Natural History MuseumBudapestHungary
  5. 5.Department of Taxonomy and EcologyBabeș-Bolyai UniversityCluj-NapocaRomania
  6. 6.Department of Invertebrate Zoology, Institute of BiologyUniversity of BialystokBiałystokPoland
  7. 7.Association for Butterfly Conservation (TOM)WarszawaPoland
  8. 8.MTA-ELTE-MTM, Ecology Research GroupBudapestHungary

Personalised recommendations