Journal of Insect Conservation

, Volume 21, Issue 3, pp 451–463 | Cite as

Quality of citizen science data and its consequences for the conservation of skipper butterflies (Hesperiidae) in Flanders (northern Belgium)

  • Pieter Vantieghem
  • Dirk Maes
  • Aurélien Kaiser
  • Thomas Merckx
ORIGINAL PAPER

Abstract

Citizen science projects have become important data sources for ecologists. However, opportunistic data are not only characterized by spatial and temporal biases, but probably also contain species identification errors, especially concerning morphologically similar species. Such misidentifications may result in wrongly estimated distribution ranges and trends, and thus in inadequate conservation measures. We illustrate this issue with three skipper butterflies (Hesperiidae) in Flanders (northern Belgium) using photographs uploaded with observations in data portals. Ochlodes sylvanus and Thymelicus lineola records had relatively low identification error rates (1 and 11 %, respectively), but the majority (59 %) of Thymelicus sylvestris records turned out to be misidentified. Using verified records only allowed us to model their distribution more accurately, especially for T. sylvestris whose actual distribution area had hitherto been strongly overestimated. An additional field study on T. sylvestris confirmed the species distribution model output as the species was almost completely restricted to sites with verified records and was largely absent from sites with unverified records. The preference of T. sylvestris for unimproved grasslands was confirmed by the negative correlation between its model-predicted presence and elevated nitrogen and ammonia levels. Thus, quality control of citizen science data is of major importance to improve the knowledge of species distribution ranges, biotope preferences and other limiting factors. This, in turn, will help to better assess species conservation statuses and to suggest more appropriate management and mitigation measures.

Keywords

Aerial ammonia pollution Nitrogen-induced environmental change Ochlodes sylvanus Species distribution modelling Thymelicus lineola Thymelicus sylvestris 

Notes

Acknowledgments

We thank all volunteers sharing skipper observations on http://www.waarnemingen.be, and are grateful to Natuurpunt Studie (Wouter Vanreusel and Karin Gielen) and Stichting Natuurinformatie for access to this database. We also thank Hans Matheve (TEREC, UGent) for help with GIS. Finally, we thank Butterfly Conservation Europe and De Vlinderstichting for the opportunity to present preliminary results of this study at the Future4Butterflies conference. We also thank two anonymous reviewers and Marc Pollet for commenting on a previous version of the manuscript.

References

  1. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. doi:10.1016/j.tree.2006.09.010 CrossRefPubMedGoogle Scholar
  2. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millennium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  3. Beck J, Böller M, Erhardt A, Schwanghart W (2014) Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol Inform 19:10–15 doi:10.1016/j.ecoinf.2013.11.002 CrossRefGoogle Scholar
  4. Bink FA (1992) Ecologische atlas van de dagvlinders van Noordwest-Europa. Schuyt & Co Uitgevers en Importeurs bv, HaarlemGoogle Scholar
  5. Bos F, Bosveld M, Groenendijk D, van Swaay CAM, Wynhoff I, De Vlinderstichting (2006) De dagvlinders van Nederland. Verspreiding en bescherming (Lepidoptera: Hesperioidea, Papilionoidea). Nederlandse Fauna 7. Nationaal Natuurhistorisch Museum Naturalis; KNNV Uitgeverij; European Invertebrate Survey, LeidenGoogle Scholar
  6. Breiman L (2001) Random forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324 CrossRefGoogle Scholar
  7. Brereton TM, Botham MS, Middlebrook I, Randle Z, Roy DB (2015) United Kingdom butterfly monitoring scheme report for 2014. Centre for Ecology & Hydrology/Butterfly Conservation, Wallingford/East LulworthGoogle Scholar
  8. De Saeger S, Guelinckx R, Van Dam G, Oosterlynck P, Van Hove M, Wils C, Paelinckx D (2014) Biologische Waarderingskaart en Natura 2000 Habitatkaart, uitgave 2014 vol INBO.R.2014.1698392. Rapporten van het Instituut voor Natuur-en Bosonderzoek. Instituut voor Natuur- en Bosonderzoek, BrusselGoogle Scholar
  9. Dennis RLH (2010) A resource-based habitat view for conservation. Butterflies in the British landscape. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  10. Desender K, Dekoninck W, Dufrêne M, Maes D (2010) Changes in the distribution of carabid beetles in Belgium revisited: have we halted the diversity loss? Biol Conserv 143:1549–1557. doi:10.1016/j.biocon.2010.03.039 CrossRefGoogle Scholar
  11. Dickinson JL et al (2012) The current state of citizen science as a tool for ecological research and public engagement. Front Ecol Environ 10:291–297. doi:10.1890/110236 CrossRefGoogle Scholar
  12. Dincă V, Lukhtanov VA, Talavera G, Vila R (2011) Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nat Commun 2:324. doi:10.1038/ncomms1329 CrossRefPubMedGoogle Scholar
  13. Ebert G, Rennwald E (1993) Die Schmetterlinge Baden-Württembergs, Band 2, Tagfalter II. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  14. Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  15. Engler JO, Balkenhol N, Filz KJ, Habel JC, Rodder D (2014) Comparative Landscape Genetics of Three Closely Related Sympatric Hesperid Butterflies with Diverging Ecological Traits. Plos One. doi:10.1371/journal.pone.0106526 Google Scholar
  16. Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand OaksGoogle Scholar
  17. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28:337–374. doi:10.1214/aos/1016218223 CrossRefGoogle Scholar
  18. Gilburn AS, Bunnefeld N, Wilson JM, Botham MS, Brereton TM, Fox R, Goulson D (2015) Are neonicotinoid insecticides driving declines of widespread butterflies? PeerJ 3:e1402. doi:10.7717/peerj.1402 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guisan A et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. doi:10.1111/Ele.12189 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hamilton SH, Pollino CA, Jakeman AJ (2015) Habitat suitability modelling of rare species using Bayesian networks: model evaluation under limited data. Ecol Model 299:64–78. doi:10.1016/j.ecolmodel.2014.12.004 CrossRefGoogle Scholar
  21. Hastie T, Tibshirani R (1987) Generalized additive models: some applications. J Am Stat Assoc 82:371–386. doi:10.2307/2289439 CrossRefGoogle Scholar
  22. Hill MO (2012) Local frequency as a key to interpreting species occurrence data when recording effort is not known. Methods Ecol Evol 3:195–205. doi:10.1111/j.2041-210X.2011.00146.x CrossRefGoogle Scholar
  23. Hochachka WM, Fink D, Hutchinson RA, Sheldon D, Wong WK, Kelling S (2012) Data-intensive science applied to broad-scale citizen science. Trends Ecol Evol 27:130–137. doi:10.1016/j.tree.2011.11.006 CrossRefPubMedGoogle Scholar
  24. Isaac NJB, Pocock MJ (2015) Bias and information in biological records. Biol J Linn Soc 115:522–531. doi:10.1111/bij.12532 CrossRefGoogle Scholar
  25. Isaac NJB, van Strien AJ, August TA, de Zeeuw MP, Roy DB (2014) Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol Evol 5:1052–1060. doi:10.1111/2041-210X.12254 CrossRefGoogle Scholar
  26. Kelling S, Fink D, La Sorte FA, Johnston A, Bruns NE, Hochachka WM (2015) Taking a ‘Big Data’ approach to data quality in a citizen science project. Ambio 44:S601–S611. doi:10.1007/s13280-015-0710-4 CrossRefGoogle Scholar
  27. Klop E, Omon B, WallisDeVries MF (2015) Impact of nitrogen deposition on larval habitats: the case of the Wall Brown butterfly Lasiommata megera. J Insect Conserv 19:393–402. doi:10.1007/s10841-014-9748-z CrossRefGoogle Scholar
  28. Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz e.V., HalleGoogle Scholar
  29. Lafranchis T (2004) Butterflies of Europe. New field guide and key. Diatheo, ParisGoogle Scholar
  30. Li XH, Wang Y (2013) Applying various algorithms for species distribution modelling. Integr Zool 8:124–135. doi:10.1111/1749-4877.12000 CrossRefPubMedGoogle Scholar
  31. Louy D, Habel JC, Schmitt T, Assmann T, Meyer M, Muller P (2007) Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conserv Genet 8:671–681. doi:10.1007/s10592-006-9213-y CrossRefGoogle Scholar
  32. Mace GM (1994) Classifying threatend species: means and ends. Philos Trans R Soc London B 344:91–97. doi:10.1098/rstb.1994.0056 CrossRefGoogle Scholar
  33. Mace GM et al (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442. doi:10.1111/j.1523-1739.2008.01044.x CrossRefPubMedGoogle Scholar
  34. Maes D, Van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276. doi:10.1016/S0006-3207(00)00182-8 CrossRefGoogle Scholar
  35. Maes D, Vanreusel W, Jacobs I, Berwaerts K, Van Dyck H (2012) Applying IUCN Red List criteria at a small regional level: a test case with butterflies in Flanders (north Belgium). Biol Conserv 145:258–266. doi:10.1016/j.biocon.2011.11.021 CrossRefGoogle Scholar
  36. Maes D, Vanreusel W, Van Dyck H (2013) Dagvlinders in Vlaanderen: nieuwe kennis voor betere actie. Uitgeverij Lannoo nv, TieltGoogle Scholar
  37. Maes D, Isaac NB, Harrower C, Collen B, van Strien A, Roy DB (2015) The use of opportunistic data for IUCN Red List assessments. Biol J Linn Soc 115:690–706. doi:10.1111/bij.12530 CrossRefGoogle Scholar
  38. Maes D et al (2016) A database on the distribution of butterflies (Lepidoptera) in northern Belgium (Flanders and the Brussels Capital Region). ZooKeys 585:143–156. doi:10.3897/zookeys.585.8019 CrossRefGoogle Scholar
  39. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edition. Chapman & Hall, LondonCrossRefGoogle Scholar
  40. OC-GIS Vlaanderen (2001) Bodemkaart van het Vlaams Gewest, schaal 1/20000. Ondersteunend Centrum GIS Vlaanderen, GentGoogle Scholar
  41. Oenema O, Velthof G, Klimont Z, Winiwarter W (2012) Emissions from agriculture and their control potentials, TSAP Report 3, version 2.1. International Institute for Applied Systems Analysis (IIASA), LaxenburgGoogle Scholar
  42. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259 doi:10.1016/j.ecolmodel.2005.03.026
  43. Poelmans L, Van Rompaey A (2009) Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: a case study in the Flanders-Brussels region. Landscape Urban Plan 93:10–19 doi:10.1016/j.landurbplan.2009.05.018 CrossRefGoogle Scholar
  44. R Core Team (2015) R: a language and environment for statistical computing, 3.1.1 edn. R Foundation for Statistical Computing, ViennaGoogle Scholar
  45. Reis S, Pinder RW, Zhang M, Lijie G, Sutton MA (2009) Reactive nitrogen in atmospheric emission inventories. Atmos Chem Phys 9:7657–7677. doi:10.5194/acp-9-7657-2009 CrossRefGoogle Scholar
  46. Skjøth CA et al (2011) Spatial and temporal variations in ammonia emissions—a freely accessible model code for Europe. Atmos Chem Phys 11:5221–5236. doi:10.5194/acp-11-5221-2011 CrossRefGoogle Scholar
  47. Stevens CJ et al (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–2945. doi:10.1016/j.envpol.2010.06.006 CrossRefPubMedGoogle Scholar
  48. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 204:1285–1293. doi:10.1126/science.3287615 CrossRefGoogle Scholar
  49. Thuiller W, Georges D, Engler R (2012) Biomod2: Ensemble platform for species distribution modeling. R package version 1.3.7/r529.Google Scholar
  50. Titeux N, Maes D, Marmion M, Luoto M, Heikkinen RK (2009) Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. J Biogeogr 36:1459–1473. doi:10.1111/j.1365-2699.2009.02088.x CrossRefGoogle Scholar
  51. Tjørnløv RS, Kissling WD, Barnagaud JY, Bøcher PK, Høye TT (2015) Oviposition site selection of an endangered butterfly at local spatial scales. J Insect Conserv 19:377–391. doi:10.1007/s10841-014-9747-0 CrossRefGoogle Scholar
  52. Tulloch AIT et al (2016) Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biol Conserv 199:157–171. doi:10.1016/j.biocon.2016.04.023 CrossRefGoogle Scholar
  53. Tweddle JC, Robinson LD, Pocock MJ, Roy HE (2012) Guide to citizen science: developing, implementing and evaluating citizen science to study biodiversity and the environment in the UK. Natural History Museum/NERC Centre for Ecology and Hydrology for UK-Environmental Observation Framework, UKGoogle Scholar
  54. Tye CA, McCleery RA, Fletcher Jr RJ, Greene DU, Butryn RS (2016) Evaluating citizen vs. professional data for modelling distributions of a rare squirrel. J Appl Ecol. doi:10.1111/1365-2664.12682 Google Scholar
  55. van Swaay CAM (2006) Basisrapport Rode Lijst Dagvlinders. De Vlinderstichting, WageningenGoogle Scholar
  56. Van Landuyt W, Vanhecke L, Hoste I, Hendrickx F, Bauwens D (2008) Changes in the distribution area of vascular plants in Flanders (northern Belgium): eutrophication as a major driving force. Biodivers Conserv 17:3045–3060. doi:10.1007/s10531-008-9415-3 CrossRefGoogle Scholar
  57. van Swaay CAM, Nowicki P, Settele J, van Strien AJ (2008) Butterfly monitoring in Europe: methods, applications and perspectives. Biodivers Conserv 17:3455–3469. doi:10.1007/s10531-008-9491-4 CrossRefGoogle Scholar
  58. van Swaay CAM et al (2011) Applying IUCN criteria to invertebrates: how red is the Red List of European butterflies? Biol Conserv 144:470–478. doi:10.1016/j.biocon.2010.09.034 CrossRefGoogle Scholar
  59. van Swaay CAM, Termaat T, Kok J, Huskens K, Poot M (2016) Vlinders en libellen geteld. Jaarverslag 2015 vol 2016.001. Rapport VS. De Vlinderstichting, WageningenGoogle Scholar
  60. Van der Heyden C, Demeyer P, Volcke EIP (2015) Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: state-of-the-art and perspectives. Biosyst Eng 134:74–93. doi:10.1016/j.biosystemseng.2015.04.002 CrossRefGoogle Scholar
  61. VMM (2015) Verzurende en vermestende luchtverontreiniging in Vlaanderen—jaarrapport 2014. Vlaamse Milieumaatschappij, AalstGoogle Scholar
  62. WallisDeVries MF, Ramaekers I (2001) Does extensive grazing benefit butterflies in coastal dunes? Restor Ecol 9:179–188. doi:10.1046/j.1526-100x.2001.009002179.x CrossRefGoogle Scholar
  63. WallisDeVries MF, van Swaay CAM (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Global Change Biol 12:1620–1626. doi:10.1111/j.1365-2486.2006.01202.x CrossRefGoogle Scholar
  64. Wikström L, Milberg P, Bergman KO (2009) Monitoring of butterflies in semi-natural grasslands: diurnal variation and weather effects. J Insect Conserv 13:203–211. doi:10.1007/s10841-008-9144-7 CrossRefGoogle Scholar
  65. Wynhoff I, van Swaay CAM, Veling K, Vliegenthart A (2014) De Nieuwe Veldgids Dagvlinders. KNNV Uitgeverij i.s.m. De Vlinderstichting, Zeist/WageningenGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pieter Vantieghem
    • 1
    • 2
  • Dirk Maes
    • 3
  • Aurélien Kaiser
    • 4
  • Thomas Merckx
    • 1
    • 4
  1. 1.Vlinderwerkgroep NatuurpuntMechelenBelgium
  2. 2.Terrestrial Ecology Unit, Biology DepartmentGhent UniversityGhentBelgium
  3. 3.Research Institute for Nature and Forest (INBO)BrusselsBelgium
  4. 4.Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life InstituteUniversité catholique de Louvain (UCL)Louvain-La-NeuveBelgium

Personalised recommendations