Skip to main content

Above-ground arthropod community structure and influence of structural-retention management in southern Patagonian scrublands, Argentina

Abstract

Southern Patagonia’s landscape hosts several semi-natural habitats, traditionally used for sheep production, such as Mulguraea tridens and Lepidophyllum cupressiforme scrublands. Mulguraea scrublands are managed via mechanical shredding to remove shrubs and increase grass availability, alternating with structural-retention strips. We analyzed the influence of structural-retention management (with cut and retention strips) in Mulguraea scrublands with regards to above-ground arthropod community structure, as well as differences between the two natural scrubland types. We worked in Santa Cruz Province (Argentina) with pitfall traps during two summers in the first 2 years after mechanical shredding. Richness, abundance, occurrence frequency, Shannon–Wiener diversity and Pielou evenness indices, and similarity among assemblages were evaluated using univariate and multivariate statistical tests. Complementarily, we described vegetation ground cover and microclimate. We collected 3279 individuals from 38 species belonging to Insecta and Arachnida Classes. Shannon–Wiener diversity and Pielou evenness indices, as well as the overall assemblages, differed significantly between managed cut strips and natural Mulguraea scrublands, mainly due to the loss and introduction of species from surrounding environments; abundance also differed in the first sampling year compared to the second year. Likewise, managed retention strips allowed the partial maintenance of arthropod community structure and had a microclimate that was similar to natural Mulguraea scrublands, although assemblages in managed cut and retention strips became more similar among themselves in the second sampling year. On the other hand, richness, abundance and assemblage of both natural scrubland types differed significantly, with 87 % more indicator species in Mulguraea than in Lepidophyllum scrublands. Greater dissimilarity occurred between both natural scrubland types in dryer years, which could be related with an El Niño Southern Oscillation event. If arthropod community structure changes prove stable over time, mechanical shredding with structural-retention management would allow for an increase in the sheep carrying capacity, while reducing impacts to the arthropod community, thus providing a viable compromise between productivity and conservation in a fragile arid environment. More studies are necessary to evaluate long term changes in above-ground arthropod community structure of scrublands in arid zones of southern Patagonia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allegretti LI, Passera CB, Robles AB (1997) Short- and long-term effects of shrub management on vegetation in the Monte, Argentina. J Arid Environ 35:685–693

    Article  Google Scholar 

  2. Baker SC, Halpern CB, Wardlaw TJ, Crawford RL, Bigley RE, Edgar GJ, Evans SA, Franklin JF, Jordan GJ, Karpievitch Y, Spies TA, Thomson RJ (2015) Short- and long-term benefits for forest biodiversity of retaining unlogged patches in harvested areas. For Ecol Manag 353:187–195

    Article  Google Scholar 

  3. Billoni S, Peri PL, Bahamonde H (2014) Banco de semillas en un arbustal nativo de la estepa bajo manejo. Actas XXIV Congreso Argentino de la Ciencia del Suelo - II Reunión Nacional “Materia Orgánica y Sustancias Húmicas”, Bahía Blanca, pp 4

    Google Scholar 

  4. Cheli GH, Corley JC (2010) Efficient sampling of ground-dwelling arthropods using pitfall traps in arid steppes. Neotrop Entomol 39(6):912–917

    Article  PubMed  Google Scholar 

  5. Cibils A, Borrelli P (2005) Grasslands of Patagonia. In: Suttie JM, Reynolds SG, Batello C (eds) Grasslands of the world. Food and Agriculture Organization, Rome, pp 121–170

    Google Scholar 

  6. Daryanto S, Eldridge DJ (2010) Plant and soil surface responses to a combination of shrub removal and grazing in a shrub-encroached woodland. J Envion Manag 91:2639–2648

    Article  Google Scholar 

  7. Duelli P, Obrist MK, Schmatz DK (1999) Biodiversity evaluation in agricultural landscapes: above-ground insects. Agric Ecosyst Environ 74:33–64

    Article  Google Scholar 

  8. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  9. Faggi AM (1985) Las comunidades vegetales de Río Gallegos, Santa Cruz. In: Boelcke O, Moore DM, Roig FA (eds) Transecta botánica de la Patagonia Austral. Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina), Instituto de la Patagonia (Chile), Royal Society (Gran Bretaña), Buenos Aires, pp 592–633

    Google Scholar 

  10. Fernández C, Vega JA, Fontúrbel T (2015) Does shrub recovery differ after prescribed burning, clearing and mastication in a Spanish heathland? Plant Ecol 216:429–437

    Article  Google Scholar 

  11. Fontúrbel MT, Fernández C, Vega JA (2016) Prescribed burning versus mechanical treatments as shrubland management options in NW Spain: Mid-term soil microbial response. Appl Soil Ecol 107:334–346

    Article  Google Scholar 

  12. Franklin J, Berg D, Thornburgh D, Tappeiner J (1997) Alternative silvicultural approaches to timber harvesting: Variable retention harvest systems. In: Kohm K, Franklin J. (eds) Creating a forestry for the 21st century: the science of ecosystem management. Island Press, Washington DC, pp 111–139

    Google Scholar 

  13. Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: and overview of available taxonomic groups. J Ins Conserv 17:831–850

    Article  Google Scholar 

  14. Godagnone R, Salazar Lea Plaza JC (2004) Suelos. In: González L, Rial P (eds) Guía geográfica interactiva de Santa Cruz. Estación experimental agropecuaria Santa Cruz, Convenio INTA- Provincia de Santa Cruz- Universidad de la Patagonia Austral, Santa Cruz

    Google Scholar 

  15. Golluscio RA, Deregibus V, Paruelo JM (1998) Sustainability and range management in the Patagonian steppe. Ecol Austr 8:265–284.

    Google Scholar 

  16. Greenslade PJM (1964) Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J Animal Ecol 33(2):301–310

    Article  Google Scholar 

  17. Grove SJ, Forster L (2011) A decade of change in the saproxylic beetle fauna of eucalypt logs in the Warra long-term log-dacay experiment, Tasmania. 2. Log-size effects, succession and functional significance of rare species. Biodiv Conserv 20:2167–2188

    Article  Google Scholar 

  18. Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lõhmus A, Martínez Pastur GJ, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney WJA, Wayne A, Franklin JF (2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62(7):633–645

    Article  Google Scholar 

  19. Jacobs JM, Spence JR, Langor DW (2007) Influence of boreal forest succession and dead wood qualities on saproxylic beetles. Agric For Entomol 9:3–16

    Article  Google Scholar 

  20. Knapp M, Řezáč M (2015) Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape. PLoS One 10(4):e0123052. doi:10.1371/journal.pone.0123052

    Article  PubMed  PubMed Central  Google Scholar 

  21. Koivula M, Kotze DJ, Hiisivuori L, Rita H (2003) Pitfall trap efficiency: do trap size, collecting fluid and vegetation structure matter? Entomol Fenn 14(1):1–14

    Google Scholar 

  22. Kreps G, Martínez Pastur G, Peri P (2012) Cambio climático en Patagonia sur. Escenarios futuros en el manejo de los recursos naturales. Ediciones INTA, Buenos Aires

    Google Scholar 

  23. Kwok ABC, Eldridge DJ (2016) The influence of shrub species and fine-scale plant density on arthropods in a semiarid shrubland. Range J 38(4):381–389

    Article  Google Scholar 

  24. Lencinas MV, Martínez Pastur GJ, Anderson CB, Busso C (2008) The value of timber quality forests for insect conservation on Tierra del Fuego Island compared to associated non-timber quality stands. J Ins Conserv 12:461–475

    Article  Google Scholar 

  25. Lencinas MV, Martínez Pastur G, Gallo E, Cellini JM (2014) Decreasing negative impacts of harvesting over insect diversity using variable retention silviculture in southern Patagonian forests. J Ins Conserv 18:479–495

    Article  Google Scholar 

  26. León RJC, Brand D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austr 8, 125–144

    Google Scholar 

  27. Li FR, Liu JL, Liu CA, Liu QJ, Niu RX (2013) Shrub and species identity effects on the distribution and diversity of a ground-dwelling arthropods in a Gobi desert. J Insect Conserv 17:319–331

    Article  Google Scholar 

  28. Liu JL, Li FR, Liu CA, Liu QJ (2012) Influences of shrub vegetation on distribution and diversity of a ground beetle community in a Gobi desert ecosystem. Biodiv Conserv 21:2601–2619

    Article  Google Scholar 

  29. Liu JL, Zhao WZ, Li FR (2015a) Effects of shrub presence and shrub species on ground beetle assemblages (Carabidae, Curculionidae and Tenebrionidae) in a sandy desert, northwestern China. J Arid Land 7:110–121

  30. Liu R, Zhu F, Steingerger Y (2015b) Effect of shrub microhabitats on aboveground and belowground arthropod distribution in a desertified steppe ecosystem. Pol J Ecol 63:534–548

  31. Liu R, Zhu F, Steingerger Y (2016) Changes in ground-dwelling arthropod diversity related to the proximity of shrub cover in a desertified system. J Arid Environ 124:172–179

    Article  Google Scholar 

  32. Mazía CN, Chaneton EJ, Kitzberger T (2006) Small-scale habitat use and assemblage structure of ground-dwelling beetles in a Patagonian shrub steppe. J Arid Environ 67(2):177–194

    Article  Google Scholar 

  33. McCune B, Grace JB 2002. Analysis of ecological communities. MjM Software, Gleneden Beach, Oregon

    Google Scholar 

  34. McCune B, Mefford MJ (1999) PC-ORD. Multivariate Analy- sis of Ecological Data. Version 5.0. MjM Software, Gleneden Beach

    Google Scholar 

  35. McGeoch MA, Butchart SHM, Spear D, Marais E, Kleynhans EJ, Symes A, Chanson J, Hoffmann M (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Div Distrib 16(1):95–108

    Article  Google Scholar 

  36. Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107

    Article  Google Scholar 

  37. Niemelä J (1990) Habitat distribution of carabid beetles in Tierra del Fuego, South America. Entomol Fenn 29(6):3–16

    Google Scholar 

  38. Niemelä J (2001) Carabid beetles (Coleopterae: Carabidae) and habitat fragmentation: a review. Eur J Entomol 98:127–132

    Article  Google Scholar 

  39. Oliva G, González L, Rial P, Livraghi E (2001) El ambiente en la Patagonia Austral. Cap. 2. In: Borrelli P, Oliva G (eds) Ganadería Sustentable en la Patagonia Austral: tecnología de manejo extensivo. Ediciones Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, pp 17–80

  40. Oliver I, Beattie AJ (1993) A possible method for the rapid assessment of biodiversity. Conserv Biol 7(3):562–568

    Article  Google Scholar 

  41. Peri PL, Rivera E, Sturzenbaum MV, Suarez D, Billoni S, Mora J, Watson B, Milicevic F (2011) Water status of plants under strips management in shrub-grass steppe of Southern Patagonia. Actas IX International Rangeland Congress, Rosario, p 651

    Google Scholar 

  42. Peri PL, Lencinas MV, Martínez Pastur GJ, Wardell-Johnson GW, Lasagno R (2013) Diversity patterns in the steppe of Argentinean Southern Patagonia: environmental drivers and impact of grazing (Chap. 4). In: Morales Prieto MB, Traba Díaz J (eds) Steppe ecosystems: biological diversity, management and restoration. NOVA Science Publishers Inc., New York, pp 73–95

    Google Scholar 

  43. Pielou EC (1975) Mathematical ecology. John Wiley and Sons Inc., New York

    Google Scholar 

  44. Potts JB, Marino E, Stephens SL (2010) Chaparral shrub recovery after fuel reduction: a comparison of prescribed fire and mastication techniques. Plant Ecol 210:303–315

    Article  Google Scholar 

  45. Reid AM, Hochuli DF (2007) Grassland invertebrate assemblages in managed landscapes: effect of host plant and microhabitat architecture. Austr Ecol 32:708–718

    Article  Google Scholar 

  46. Rivera E, Sturzenbaum MV, Milicevic F, Suarez D, Watson BR, Billoni S (2011) Mechanical control of Juniella tridens shrubs in South Patagonia. Actas IX International Rangeland Congress, Rosario, pp 325

    Google Scholar 

  47. Roig F (1998) La Vegetación de la Patagonia. In: Correa M (ed) Flora Patagónica, vol 1, INTA Colección Científica, Tomo VIII, Buenos Aires, pp 48–174

  48. Rollins D, Bryant FC (1986) Floral change following mechanical brush removal in Central Texas. J Range Manag 39:237–240

    Article  Google Scholar 

  49. Sackmann P, Flores GE (2009) Temporal and spatial patterns of tenebrionid beetle diversity in NW Patagonia, Argentina. J Arid Environ 73:1095–1102

    Article  Google Scholar 

  50. Sackmann P, Ruggiero A, Kun M, Farji-Brener AG (2006) Efficiency of a rapid assessment of the diversity of ground beetles and ants, in natural and disturbed habitats of the Nahuel Huapi region (NW Patagonia, Argentina). Biodiv Conserv 15(6):2061–2084

    Article  Google Scholar 

  51. Sinclair BJ, Terblanche JS, Scout MB, Blatch GL, Klock CJ, Chown SL (2006) Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. J Ins Physiol 52:29–50

    CAS  Article  Google Scholar 

  52. Sokal RR, Rohlf JF (1981) Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, San Francisco, pp 859

    Google Scholar 

  53. Sømme L (1995) Invertebrates in hot and cold Arid environments (adaptations of desert organisms). Springer, Heidelberg, pp 25–52

    Google Scholar 

  54. Tejeda-Cruz C, Mehltreter K, Sosa VJ (2008) Indicadores ecológicos multi-taxonómicos. In: Manson RH, Fernández-Ortiz V, Gallina S, Mehltreter K. (eds) Agroecosistemas cafetaleros de Veracruz. Biodiversidad, manejo y conservación. Instituto Nacional de Ecología, Mexico, pp 271–278

    Google Scholar 

  55. Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: if, when, and how. Biol Conserv 132:166–182

    Article  Google Scholar 

  56. Werner SM, Raffa KF (2000) Effects of forest management practices on the diversity of ground-occurring beetles in mixed northern hardwood forests of the Great Lakes Region. For Ecol Manage 139:135–155

    Article  Google Scholar 

  57. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53(9):315–324

    Article  Google Scholar 

  58. Zhao HL, Liu RT (2013) The “bug island” effect of shrubs and its formation mechanism in Horqin Sand Land, Inner Mongolia. Catena 105:69–74

    Article  Google Scholar 

  59. Zimmerman GM, Goetz H, Mielke PW (1985) Use of an improved statistical-method for group comparisons to study effects of prairie fire. Ecology 66:606–611

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the collaboration of Emilio Rivera, María Vriginia Sturzenbaum, Francisco Milicevic and Sabrina Billoni in field measurements. The authors also gratefully thank the Centro Austral de Investigaciones Científicas and Instituto Nacional de Tecnología Agropecuaria for their support during the realization of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Lencinas.

Appendices

Appendix 1

See Table 5.

Table 5 Vascular plant species list for floristically surveyed scrubland types (MCM managed cut strips in Mulguraea; NM natural Mulguraea, NL natural Lepidophyllum), classified by life form, origin and class cover (>75, 75-50, 50-5, 5-1, <1%)

Appendix 2

See Fig. 4.

Fig. 4
figure4

Microclimatic characterization of managed and natural Mulguraea scrublands, presenting mean, maximum and minimum monthly air and soil temperature in managed cut strips (MCM) and natural (NM) scrublands throughout 2009–2010 and 2010–2011 growing seasons (A), and relative humidity and rainfall, measured in a open area near Mulguraea scrublands, throughout 2009–2010 and 2010–2011 growing seasons (B). The growing season extends from November to May

Appendix 3

See Table 6.

Table 6 Above-ground arthropod species list for scrubland types (MCM managed cut strips in Mulguraea, MRM managed retention strips in Mulguraea, NM natural Mulguraea, NL natural Lepidophyllum), showing occurrence frequency by site (without distinction of sampling year)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sola, F.J., Peri, P.L., Huertas, L. et al. Above-ground arthropod community structure and influence of structural-retention management in southern Patagonian scrublands, Argentina. J Insect Conserv 20, 929–944 (2016). https://doi.org/10.1007/s10841-016-9918-2

Download citation

Keywords

  • Ants
  • Beetles
  • Camel spiders
  • Conservation
  • Scorpions
  • South Patagonia
  • Xeric landscape