Host plant preference in the protected myrmecophilous Transylvanian Blue (Pseudophilotes bavius hungarica) butterfly (Lepidoptera: Lycaenidae) and its relationship with potential ant partners

Abstract

When selecting specific host plants, caterpillars of many lycaenid butterflies, such as the protected Pseudophilotes bavius hungarica, are known to engage in various interactions with ants, which help them survive. Although P. bavius is a protected species, data about its host plant selection is very scarce, and little information is available on its myrmecophilous relationships. Our aim was to identify the host plant characteristics that determine the occurrence of the caterpillar and to clarify the specificity of its myrmecophily. We conducted a series of field surveys regarding host plant characteristics. Laboratory experiments were carried out to investigate the nature of interactions between the caterpillar and its potential ant partners. Control experiments involving non-visiting ants were also performed. On the basis of our findings, the physical characteristics of host plants do not seem to influence host plant choice, but the absence of aphids and the presence of different ant species proved important. According to the results of behavioural assays, neutral reactions to the caterpillars were recorded in the case of ant species that regularly visited the host plant (Lasius paralienus, Camponotus aethiops), in contrast to Tapinoma subboreale, which was not observed at all on the host plants and which behaved aggressively towards the larvae. Therefore, the caterpillar is expected to show a certain ant host selectivity. The study constitutes an essential contribution to our knowledge of the natural history of a protected butterfly species, which can be used as a basis for more appropriate management strategies, while also shedding light on aspects of myrmecophilous relationships in Lycaenidae in general.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    Council Directive 92/43/EEC on the conservation of Natural habitats and of wild fauna and flora OUG no 57/2007 approved with amendments by Law 49/2011 on the protected nature reserves, natural habitats, wild flora and fauna.

References

  1. Agrawal AA, Fordyce JA (2000) Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. Proc R Soc B Biol Sci 267:1857–1861

  2. Als TD, Nash DR, Boomsma JJ (2002) Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol Entomol 27:403–414

    Article  Google Scholar 

  3. Árnyas E, Bereczki J, Tóth A, Pecsenye K, Varga Z (2006) Egg-laying preferences of the xerophilous ecotype of Maculinea alcon (Lepidoptera: Lycaenidae) in the Aggtelek National Park. Eur J Entomol 103:587–595

    Article  Google Scholar 

  4. Árnyas E, Bereczki J, Tóth A, Varga K, Pecsenye K, Tartally A, Varga Z (2009) Oviposition preferences of Maculinea alcon as influenced by aphid (Aphis gentianae) and fungal (Puccinia gentianae) infestation of larval host plants. Ecol Entomol 34:90–97

    Article  Google Scholar 

  5. Atsatt PR (1981) Lycaenid butterflies and ants: selection for enemy-free space. Am Nat 118:638–654

  6. Axén AH (2000) Variation in behaviour of lycaenid larvae when attended by different ant species. Evol Ecol 14:611–625

    Article  Google Scholar 

  7. Axén AH, Leimar O, Hoffman V (1996) Signalling in a mutualistic interaction. Anim Behav 52:321–333

    Article  Google Scholar 

  8. Bächtold A, Alves-Silva E (2012) Behavioural strategy of a lycaenid (Lepidoptera) caterpillar against aggressive ants in a Brazilian savanna. Acta Ethol 16:83–90

    Article  Google Scholar 

  9. Bächtold A, Alves-Silva E, Kaminski LA, Del-Claro K (2014) The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies. Naturwissenschaften 101:913–919

    Article  PubMed  Google Scholar 

  10. Ballmer GR (2003) Observations on resource partitioning among ants (Hymenoptera: Formicidae) and Lycaenid larvae (Lepidoptera: Lycaenidae) associated with Pueraria phaseoloides in South Thailand. ScienceAsia 29:197–202

    Article  Google Scholar 

  11. Barbero F, Patricelli D, Witek M, Balletto E, Casacci LP, Sala M, Bonelli S (2012) Myrmica ants and their butterfly parasites with special focus on the acoustic communication. Psyche 2012:1–11

    Article  Google Scholar 

  12. Bartoń K (2013) MuMIn: multi-model inference. R package version 1.9. 13. http://CRAN.R-project.org/package=MuMIn

  13. Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0–5. http://CRAN.R-project.org/package=lme4

  14. Baylis M, Pierce NE (1991) The effect of host-plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus evagoras. Ecol Entomol 16:1–9.

    Article  Google Scholar 

  15. Bury J, Savchuk V (2015) New data on the biology of ten lycaenid butterflies (Lepidoptera: Lycaenidae) of the genera Tomares R ambur, 1840, Pseudophilotes Beuret, 1958, Polyommatus L atreille, 1804, and Plebejus K luk, 1780 from the Crimea and their attending ants (Hymenoptera: Formicidae). Acta Entomol Sileziana 23:1–16

    Google Scholar 

  16. Crișan A, Sitar C, Craioveanu MC, Rákosy L (2011) The protected Transylvanian Blue (Pseudophilotes bavius hungarica): new information on the morphology and biology. Nota lepidopterologica 34:163–168

    Google Scholar 

  17. Crișan A, Sitar C, Craioveanu MC, Vizauer TC, Rákosy L (2014) Multiannual population size estimates and mobility of the endemic Pseudophilotes bavius hungarica (Lepidoptera: Lycaenidae) from Transylvania (Romania). North-West J Zool 10:115–124

    Google Scholar 

  18. Czekes Zs, Markó B, Nash DR, Ferencz M, Lázár B, Rákosy L (2014) Differences in oviposition strategies between two ecotypes of the endangered myrmecophilous butterfly Maculinea alcon (Lepidoptera: Lycaenidae) under unique syntopic conditions. Insect Conserv Diver 7:122–131

    Article  Google Scholar 

  19. DeVries PJ, Cabral CB, Penz MC (2004) The early stages of Apodemia paucipuncta (Riodinidae): myrmecophily, a new caterpillar ant-organ and consequences for classification. Milwaukee Pub Museum Contr Biol Geol 102:3–15

    Google Scholar 

  20. Dincă V, Cuvelier S, Mølgaard MS (2011) Distribution and conservation status of Pseudophilotes bavius (Lepidoptera: Lycaenidae) in Dobrogea (south-eastern Romania). Phegea 39:59–67

    Google Scholar 

  21. Erős K, Markó B, Gál Cs, Czekes Zs, Csata E (2009) Sharing versus monopolizing: distribution of aphid sources among nests within a Formica exsecta Nylander (Hymenoptera: Formicidae) supercolony. Israel J Entomol 39:105–127

    Google Scholar 

  22. Fiedler K (1991) European and Northwest African Lycaenidae (Lepidoptera) and their associations with ants. J Res Lepidoptera 28:239–257

    Google Scholar 

  23. Fiedler K (1995) Lycaenid butterflies and plants: is myrmecophily associated with particular hostplant preferences? Ethol Ecol Evol 7:107–132

  24. Fiedler K (2001) Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Divers Distrib 7:45–60

  25. Fiedler K (2006) Ant-associates of Palaearctic lycaenid butterfly larvae (Hymenoptera: Formicidae; Lepidoptera: Lycaenidae)—a review. Myrmecol Nachr 9:77–87

    Google Scholar 

  26. Fürst MA, Nash DR (2010) Host ant independent oviposition in the parasitic butterfly Maculinea alcon. Biology Lett 6:174–176

    Article  Google Scholar 

  27. Gilbert F, Rashad S, Kamel M, Gilbert F (2010) Monitoring of the endemic sinai baton blue butterfly Pseudophilotes sinaicus in the St. Katherine Protectorate, South Sinai. Egypt J Biol 12:18–26

  28. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evolution Biol 24:699–711

    CAS  Article  Google Scholar 

  29. Hojo MK, Yamamoto A, Akino T, Tsuji K, Yamaoka R (2014) Ants use partner specific odors to learn to recognize a mutualistic partner. PLoS ONE 9:e86054

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge MA, p 732

    Google Scholar 

  31. Jakab G, Kapocsi J (2005) Bókoló zsálya (Salvia nutans). Fajmegőrzési tervek. KvVM Természetvédelmi Hivatal, Budapest, Hungary, pp 20 (in Hungarian)

  32. James M (2006a) Interactions among species in a tri-trophic system: the influence of ants on the distribution of the Sinai Baton Blue butterfly. Egypt J Biol 8:17–26

  33. James M (2006b) Metapopulations and the Sinai Baton Blue (Pseudophilotes sinaicus Nakamura): an introduction. Egypt J Biol 8:7–16

  34. James M, Gilbert F, Zalat S (2003) Thyme and isolation for the Sinai baton blue butterfly (Pseudophilotes sinaicus). Oecologia 134:445–453

    Article  PubMed  Google Scholar 

  35. Jansson C (2013) Habitat selection and oviposition of the endangered butterfly Scolitantides orion in Sweden. Master Thesis, Linköpings Universitet, Sweden

  36. Jutzeler D, Rákosy L, Bros E (1997) Observation et élevage de Pseudophilotes bavius (Eversmann 1832) des environs de Cluj; distribution de cette espèce en Roumanie. Une nouvelle plante nouricière de Colias alfacariensis (Ribbe 1905). Bulletin de la Société Entomologique de Mulhouse, Avril–Juin, 23–30

  37. Kaminski LA, Rodrigues D (2011) Species-specific levels of ant attendance mediate performance costs in a facultative myrmecophilous butterfly. Physiol Entomol 36:208–214

    Article  Google Scholar 

  38. Kaminski LA, Freitas AVL, Oliveira PS (2010) Interaction between mutualisms: ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am Nat 176:322–334

  39. Kaminski LA, Rodrigues D, Freitas AVL (2012) Immature stages of (Lepidoptera: Lycaenidae): host plants, tending ants, natural enemies and morphology. J Nat Hist 46:645–667

  40. Kun A, Ruprecht E, Bartha S, Szabó A, Virágh K (2007) Az Erdélyi Mezőség kincse: a gyepvegetáció egyedülálló gazdagsága (Unique diversity of grassland in the Transylvanian Lowland). Kitaibelia 12:88–96

    Google Scholar 

  41. Maák I, Markó B, Erős K, Babik H, Ślipiński P, Czechowski W (2014) Cues or meaningless objects? differential responses of the ant Formica cinerea to corpses of competitors and enslavers. Anim Behav 91:53–59

    Article  Google Scholar 

  42. Marttila O, Saarinen K, Jantunen J (1997) Habitat restoration and a successful reintroduction of the endangered Baton Blue butterfly (Pseudophilotes baton schiffermuelleri) in SE Finland. Ann Zool Fennici 34:177–185

    Google Scholar 

  43. Nyabuga FN, Völkl W, Schwörer U, Weisser WW, Mackauer M (2012) Mating strategies in solitary aphid parasitoids: effect of patch residence time and ant attendance. J Insect Behav 25:80–95

    Article  Google Scholar 

  44. Obregón R, Arenas-Castro S, Gil-T F, Jordano D, Fernández-Haeger J (2014) Biología, ecología y modelo de distribución de las especies del género Pseudophilotes Beuret, 1958 en Andalucía (Sur de España) (Lepidoptera: Lycaenidae).SHILAP Revista de Lepidopterología 42:501–515

  45. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, OʼHara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0–10. http://CRAN.R-project.org/package=vegan

  46. Oliveira PS (1997) The ecological function of extrafloral nectaries: herbivore deterrence by visiting ants and reproductive output in Caryocar brasiliense (Caryocaraceae). Funct Ecol 11:323–330

    Article  Google Scholar 

  47. Pamminger T, Scharf I, Pennings PS, Foitzik S (2011) Increased host aggression as an induced defense against slave-making ants. Behav Ecol 22:255–260

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pickens BA, Root KV (2008) Oviposition strategy and behavior of the Karner blue butterfly, Lycaeides melissa samuelis (Lycaenidae). J Lepid Soc 62:130–132

    Google Scholar 

  49. Pierce NE, Elgar MA (1985) The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly. Behav Ecol Sociobiol 16:209–222

    Article  Google Scholar 

  50. Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771

    CAS  Article  PubMed  Google Scholar 

  51. R Development Core TEAM (2008) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. URL http://www.r-project.org

  52. Rákosy L, Goia M, Kovács Z (2003) Catalogul Lepidopterelor României—Verzeichnis der Schmetterlinge Rumäniens. Societatea Lepidopterologică Română, Cluj-Napoca, Romania, 446

  53. Robbins RK (1991) Cost and evolution of a facultative mutualism between ants and lycaenid larvae (Lepidoptera). Oikos 62:363–369

    Article  Google Scholar 

  54. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, USA, 392

    Google Scholar 

  55. Seufert P, Fiedler K (1996) The influence of ants on patterns of colonization and establishment within a set of coexisting lycaenid butterflies in a south-east Asian tropical rain forest. Oecologia 106:127–136

    Article  Google Scholar 

  56. Stadler B (2002) Determinants of the size of aphid-parasitoid assemblages. J Appl Entomol 126:258–264

    Article  Google Scholar 

  57. Stadler B, Dixon AFG (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24:363–369

    Article  Google Scholar 

  58. Stadler B, Dixon AFG (2008) Mutualism. Ants and their insect partners. Cambridge University Press, New York, p 219

    Google Scholar 

  59. Steiner FM, Sielezniew M, Schlick-Steiner BC, Höttinger H, Stankiewicz A, Górnicki A (2003) Host specificity revisited: new data on Myrmica host ants of the lycaenid butterfly Maculinea rebeli. J Insect Conserv 7:1–6

    Article  Google Scholar 

  60. Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308. doi:10.1016/j.tree.2004.03.018

    Article  PubMed  Google Scholar 

  61. Tartally A, Nash DR, Lengyel S, Varga Z (2008) Patterns of host ant use by sympatric populations of Maculinea alcon and M. ʻrebeli’ in the Carpathian Basin. Insect Soc 55:370–381

    Article  Google Scholar 

  62. Thompson K, Gilbert F (2014) Phenological synchrony between a plant and a specialised herbivore. Basic Appl Ecol 15:353–361

    Article  Google Scholar 

  63. Thompson K, Shepherd A, Gilbert F (2014) Plant quality and the presence of beneficiaries govern the larval distribution of the critically endangered Sinai Baton Blue butterfly (Pseudophilotes sinaicus). J Insect Conserv 18:189–195

    Article  Google Scholar 

  64. Tolman T (1992) On the life-history of Pseudophilotes bavius (Eversmann, 1832) in S. Greece, its distribution in the Peloponnesos and a new record for N. Greece (Lepidoptera: Lycaenidae). Phegea 20:35–39

    Google Scholar 

  65. Webb RM, Pullin SA (2000) Egg distribution in the large copper butterfly Lycaena dispar batavus (Lepidoptera: Lycaenidae): Host plant versus habitat mediated effects. Eur J Entomol 97:363–367

    Article  Google Scholar 

  66. Weeks JA (2003) Parasitism and ant protection alter the survival of the lycaenid Hemiargus isola. Ecol Entomol 28:228–232

    Article  Google Scholar 

  67. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual appearance and the abundance of their host plants. Oecologia 63:23–29

    Article  Google Scholar 

  68. Witek M, Barbero F, Markó B (2014) Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insect Soc 61:307–323

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Enikő Csata and Kriszta Kincső Keresztes for the help they provided in the course of our fieldwork and in the lab. We are grateful to István Maák for his assistance with statistical issues. Thomas Cooper kindly provided linguistic assistance. The paper is part of Enikő Németʼs doctoral research, which was made possible by the financial support of the Sectoral Operational Programme for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the project POSDRU/159/1.5/S/133391—“Doctoral and postdoctoral excellence programs for training highly qualified human resources for research in the fields of Life Sciences, Environment and Earth”. In preparation of the manuscript, Bálint Markó’s work was supported by the Bolyai János scholarship of the Hungarian Academy of Sciences, and Zsolt Czekes’s had support through a grant provided by the Romanian Ministry of National Education, CNCS-UEFISCDI, Project No. PN-II-ID-PCE-2012-4-0595.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Enikő Német or Bálint Markó.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Német, E., Czekes, Z., Markó, B. et al. Host plant preference in the protected myrmecophilous Transylvanian Blue (Pseudophilotes bavius hungarica) butterfly (Lepidoptera: Lycaenidae) and its relationship with potential ant partners. J Insect Conserv 20, 765–772 (2016). https://doi.org/10.1007/s10841-016-9907-5

Download citation

Keywords

  • Butterflies
  • Conservation
  • Mutualism
  • Myrmecophily