Journal of Insect Conservation

, Volume 20, Issue 5, pp 765–772 | Cite as

Host plant preference in the protected myrmecophilous Transylvanian Blue (Pseudophilotes bavius hungarica) butterfly (Lepidoptera: Lycaenidae) and its relationship with potential ant partners

  • Enikő NémetEmail author
  • Zsolt Czekes
  • Bálint MarkóEmail author
  • László Rákosy


When selecting specific host plants, caterpillars of many lycaenid butterflies, such as the protected Pseudophilotes bavius hungarica, are known to engage in various interactions with ants, which help them survive. Although P. bavius is a protected species, data about its host plant selection is very scarce, and little information is available on its myrmecophilous relationships. Our aim was to identify the host plant characteristics that determine the occurrence of the caterpillar and to clarify the specificity of its myrmecophily. We conducted a series of field surveys regarding host plant characteristics. Laboratory experiments were carried out to investigate the nature of interactions between the caterpillar and its potential ant partners. Control experiments involving non-visiting ants were also performed. On the basis of our findings, the physical characteristics of host plants do not seem to influence host plant choice, but the absence of aphids and the presence of different ant species proved important. According to the results of behavioural assays, neutral reactions to the caterpillars were recorded in the case of ant species that regularly visited the host plant (Lasius paralienus, Camponotus aethiops), in contrast to Tapinoma subboreale, which was not observed at all on the host plants and which behaved aggressively towards the larvae. Therefore, the caterpillar is expected to show a certain ant host selectivity. The study constitutes an essential contribution to our knowledge of the natural history of a protected butterfly species, which can be used as a basis for more appropriate management strategies, while also shedding light on aspects of myrmecophilous relationships in Lycaenidae in general.


Butterflies Conservation Mutualism Myrmecophily 



The authors would like to thank Enikő Csata and Kriszta Kincső Keresztes for the help they provided in the course of our fieldwork and in the lab. We are grateful to István Maák for his assistance with statistical issues. Thomas Cooper kindly provided linguistic assistance. The paper is part of Enikő Németʼs doctoral research, which was made possible by the financial support of the Sectoral Operational Programme for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the project POSDRU/159/1.5/S/133391—“Doctoral and postdoctoral excellence programs for training highly qualified human resources for research in the fields of Life Sciences, Environment and Earth”. In preparation of the manuscript, Bálint Markó’s work was supported by the Bolyai János scholarship of the Hungarian Academy of Sciences, and Zsolt Czekes’s had support through a grant provided by the Romanian Ministry of National Education, CNCS-UEFISCDI, Project No. PN-II-ID-PCE-2012-4-0595.


  1. Agrawal AA, Fordyce JA (2000) Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. Proc R Soc B Biol Sci 267:1857–1861Google Scholar
  2. Als TD, Nash DR, Boomsma JJ (2002) Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol Entomol 27:403–414CrossRefGoogle Scholar
  3. Árnyas E, Bereczki J, Tóth A, Pecsenye K, Varga Z (2006) Egg-laying preferences of the xerophilous ecotype of Maculinea alcon (Lepidoptera: Lycaenidae) in the Aggtelek National Park. Eur J Entomol 103:587–595CrossRefGoogle Scholar
  4. Árnyas E, Bereczki J, Tóth A, Varga K, Pecsenye K, Tartally A, Varga Z (2009) Oviposition preferences of Maculinea alcon as influenced by aphid (Aphis gentianae) and fungal (Puccinia gentianae) infestation of larval host plants. Ecol Entomol 34:90–97CrossRefGoogle Scholar
  5. Atsatt PR (1981) Lycaenid butterflies and ants: selection for enemy-free space. Am Nat 118:638–654Google Scholar
  6. Axén AH (2000) Variation in behaviour of lycaenid larvae when attended by different ant species. Evol Ecol 14:611–625CrossRefGoogle Scholar
  7. Axén AH, Leimar O, Hoffman V (1996) Signalling in a mutualistic interaction. Anim Behav 52:321–333CrossRefGoogle Scholar
  8. Bächtold A, Alves-Silva E (2012) Behavioural strategy of a lycaenid (Lepidoptera) caterpillar against aggressive ants in a Brazilian savanna. Acta Ethol 16:83–90CrossRefGoogle Scholar
  9. Bächtold A, Alves-Silva E, Kaminski LA, Del-Claro K (2014) The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies. Naturwissenschaften 101:913–919CrossRefPubMedGoogle Scholar
  10. Ballmer GR (2003) Observations on resource partitioning among ants (Hymenoptera: Formicidae) and Lycaenid larvae (Lepidoptera: Lycaenidae) associated with Pueraria phaseoloides in South Thailand. ScienceAsia 29:197–202CrossRefGoogle Scholar
  11. Barbero F, Patricelli D, Witek M, Balletto E, Casacci LP, Sala M, Bonelli S (2012) Myrmica ants and their butterfly parasites with special focus on the acoustic communication. Psyche 2012:1–11CrossRefGoogle Scholar
  12. Bartoń K (2013) MuMIn: multi-model inference. R package version 1.9. 13.
  13. Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0–5.
  14. Baylis M, Pierce NE (1991) The effect of host-plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus evagoras. Ecol Entomol 16:1–9.CrossRefGoogle Scholar
  15. Bury J, Savchuk V (2015) New data on the biology of ten lycaenid butterflies (Lepidoptera: Lycaenidae) of the genera Tomares R ambur, 1840, Pseudophilotes Beuret, 1958, Polyommatus L atreille, 1804, and Plebejus K luk, 1780 from the Crimea and their attending ants (Hymenoptera: Formicidae). Acta Entomol Sileziana 23:1–16Google Scholar
  16. Crișan A, Sitar C, Craioveanu MC, Rákosy L (2011) The protected Transylvanian Blue (Pseudophilotes bavius hungarica): new information on the morphology and biology. Nota lepidopterologica 34:163–168Google Scholar
  17. Crișan A, Sitar C, Craioveanu MC, Vizauer TC, Rákosy L (2014) Multiannual population size estimates and mobility of the endemic Pseudophilotes bavius hungarica (Lepidoptera: Lycaenidae) from Transylvania (Romania). North-West J Zool 10:115–124Google Scholar
  18. Czekes Zs, Markó B, Nash DR, Ferencz M, Lázár B, Rákosy L (2014) Differences in oviposition strategies between two ecotypes of the endangered myrmecophilous butterfly Maculinea alcon (Lepidoptera: Lycaenidae) under unique syntopic conditions. Insect Conserv Diver 7:122–131CrossRefGoogle Scholar
  19. DeVries PJ, Cabral CB, Penz MC (2004) The early stages of Apodemia paucipuncta (Riodinidae): myrmecophily, a new caterpillar ant-organ and consequences for classification. Milwaukee Pub Museum Contr Biol Geol 102:3–15Google Scholar
  20. Dincă V, Cuvelier S, Mølgaard MS (2011) Distribution and conservation status of Pseudophilotes bavius (Lepidoptera: Lycaenidae) in Dobrogea (south-eastern Romania). Phegea 39:59–67Google Scholar
  21. Erős K, Markó B, Gál Cs, Czekes Zs, Csata E (2009) Sharing versus monopolizing: distribution of aphid sources among nests within a Formica exsecta Nylander (Hymenoptera: Formicidae) supercolony. Israel J Entomol 39:105–127Google Scholar
  22. Fiedler K (1991) European and Northwest African Lycaenidae (Lepidoptera) and their associations with ants. J Res Lepidoptera 28:239–257Google Scholar
  23. Fiedler K (1995) Lycaenid butterflies and plants: is myrmecophily associated with particular hostplant preferences? Ethol Ecol Evol 7:107–132Google Scholar
  24. Fiedler K (2001) Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Divers Distrib 7:45–60Google Scholar
  25. Fiedler K (2006) Ant-associates of Palaearctic lycaenid butterfly larvae (Hymenoptera: Formicidae; Lepidoptera: Lycaenidae)—a review. Myrmecol Nachr 9:77–87Google Scholar
  26. Fürst MA, Nash DR (2010) Host ant independent oviposition in the parasitic butterfly Maculinea alcon. Biology Lett 6:174–176CrossRefGoogle Scholar
  27. Gilbert F, Rashad S, Kamel M, Gilbert F (2010) Monitoring of the endemic sinai baton blue butterfly Pseudophilotes sinaicus in the St. Katherine Protectorate, South Sinai. Egypt J Biol 12:18–26Google Scholar
  28. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evolution Biol 24:699–711CrossRefGoogle Scholar
  29. Hojo MK, Yamamoto A, Akino T, Tsuji K, Yamaoka R (2014) Ants use partner specific odors to learn to recognize a mutualistic partner. PLoS ONE 9:e86054CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge MA, p 732CrossRefGoogle Scholar
  31. Jakab G, Kapocsi J (2005) Bókoló zsálya (Salvia nutans). Fajmegőrzési tervek. KvVM Természetvédelmi Hivatal, Budapest, Hungary, pp 20 (in Hungarian)Google Scholar
  32. James M (2006a) Interactions among species in a tri-trophic system: the influence of ants on the distribution of the Sinai Baton Blue butterfly. Egypt J Biol 8:17–26Google Scholar
  33. James M (2006b) Metapopulations and the Sinai Baton Blue (Pseudophilotes sinaicus Nakamura): an introduction. Egypt J Biol 8:7–16Google Scholar
  34. James M, Gilbert F, Zalat S (2003) Thyme and isolation for the Sinai baton blue butterfly (Pseudophilotes sinaicus). Oecologia 134:445–453CrossRefPubMedGoogle Scholar
  35. Jansson C (2013) Habitat selection and oviposition of the endangered butterfly Scolitantides orion in Sweden. Master Thesis, Linköpings Universitet, SwedenGoogle Scholar
  36. Jutzeler D, Rákosy L, Bros E (1997) Observation et élevage de Pseudophilotes bavius (Eversmann 1832) des environs de Cluj; distribution de cette espèce en Roumanie. Une nouvelle plante nouricière de Colias alfacariensis (Ribbe 1905). Bulletin de la Société Entomologique de Mulhouse, Avril–Juin, 23–30Google Scholar
  37. Kaminski LA, Rodrigues D (2011) Species-specific levels of ant attendance mediate performance costs in a facultative myrmecophilous butterfly. Physiol Entomol 36:208–214CrossRefGoogle Scholar
  38. Kaminski LA, Freitas AVL, Oliveira PS (2010) Interaction between mutualisms: ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am Nat 176:322–334Google Scholar
  39. Kaminski LA, Rodrigues D, Freitas AVL (2012) Immature stages of (Lepidoptera: Lycaenidae): host plants, tending ants, natural enemies and morphology. J Nat Hist 46:645–667Google Scholar
  40. Kun A, Ruprecht E, Bartha S, Szabó A, Virágh K (2007) Az Erdélyi Mezőség kincse: a gyepvegetáció egyedülálló gazdagsága (Unique diversity of grassland in the Transylvanian Lowland). Kitaibelia 12:88–96Google Scholar
  41. Maák I, Markó B, Erős K, Babik H, Ślipiński P, Czechowski W (2014) Cues or meaningless objects? differential responses of the ant Formica cinerea to corpses of competitors and enslavers. Anim Behav 91:53–59CrossRefGoogle Scholar
  42. Marttila O, Saarinen K, Jantunen J (1997) Habitat restoration and a successful reintroduction of the endangered Baton Blue butterfly (Pseudophilotes baton schiffermuelleri) in SE Finland. Ann Zool Fennici 34:177–185Google Scholar
  43. Nyabuga FN, Völkl W, Schwörer U, Weisser WW, Mackauer M (2012) Mating strategies in solitary aphid parasitoids: effect of patch residence time and ant attendance. J Insect Behav 25:80–95CrossRefGoogle Scholar
  44. Obregón R, Arenas-Castro S, Gil-T F, Jordano D, Fernández-Haeger J (2014) Biología, ecología y modelo de distribución de las especies del género Pseudophilotes Beuret, 1958 en Andalucía (Sur de España) (Lepidoptera: Lycaenidae).SHILAP Revista de Lepidopterología 42:501–515Google Scholar
  45. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, OʼHara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0–10.
  46. Oliveira PS (1997) The ecological function of extrafloral nectaries: herbivore deterrence by visiting ants and reproductive output in Caryocar brasiliense (Caryocaraceae). Funct Ecol 11:323–330CrossRefGoogle Scholar
  47. Pamminger T, Scharf I, Pennings PS, Foitzik S (2011) Increased host aggression as an induced defense against slave-making ants. Behav Ecol 22:255–260CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pickens BA, Root KV (2008) Oviposition strategy and behavior of the Karner blue butterfly, Lycaeides melissa samuelis (Lycaenidae). J Lepid Soc 62:130–132Google Scholar
  49. Pierce NE, Elgar MA (1985) The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly. Behav Ecol Sociobiol 16:209–222CrossRefGoogle Scholar
  50. Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771CrossRefPubMedGoogle Scholar
  51. R Development Core TEAM (2008) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. URL
  52. Rákosy L, Goia M, Kovács Z (2003) Catalogul Lepidopterelor României—Verzeichnis der Schmetterlinge Rumäniens. Societatea Lepidopterologică Română, Cluj-Napoca, Romania, 446Google Scholar
  53. Robbins RK (1991) Cost and evolution of a facultative mutualism between ants and lycaenid larvae (Lepidoptera). Oikos 62:363–369CrossRefGoogle Scholar
  54. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, USA, 392Google Scholar
  55. Seufert P, Fiedler K (1996) The influence of ants on patterns of colonization and establishment within a set of coexisting lycaenid butterflies in a south-east Asian tropical rain forest. Oecologia 106:127–136CrossRefGoogle Scholar
  56. Stadler B (2002) Determinants of the size of aphid-parasitoid assemblages. J Appl Entomol 126:258–264CrossRefGoogle Scholar
  57. Stadler B, Dixon AFG (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24:363–369CrossRefGoogle Scholar
  58. Stadler B, Dixon AFG (2008) Mutualism. Ants and their insect partners. Cambridge University Press, New York, p 219CrossRefGoogle Scholar
  59. Steiner FM, Sielezniew M, Schlick-Steiner BC, Höttinger H, Stankiewicz A, Górnicki A (2003) Host specificity revisited: new data on Myrmica host ants of the lycaenid butterfly Maculinea rebeli. J Insect Conserv 7:1–6CrossRefGoogle Scholar
  60. Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308. doi: 10.1016/j.tree.2004.03.018 CrossRefPubMedGoogle Scholar
  61. Tartally A, Nash DR, Lengyel S, Varga Z (2008) Patterns of host ant use by sympatric populations of Maculinea alcon and M. ʻrebeli’ in the Carpathian Basin. Insect Soc 55:370–381CrossRefGoogle Scholar
  62. Thompson K, Gilbert F (2014) Phenological synchrony between a plant and a specialised herbivore. Basic Appl Ecol 15:353–361CrossRefGoogle Scholar
  63. Thompson K, Shepherd A, Gilbert F (2014) Plant quality and the presence of beneficiaries govern the larval distribution of the critically endangered Sinai Baton Blue butterfly (Pseudophilotes sinaicus). J Insect Conserv 18:189–195CrossRefGoogle Scholar
  64. Tolman T (1992) On the life-history of Pseudophilotes bavius (Eversmann, 1832) in S. Greece, its distribution in the Peloponnesos and a new record for N. Greece (Lepidoptera: Lycaenidae). Phegea 20:35–39Google Scholar
  65. Webb RM, Pullin SA (2000) Egg distribution in the large copper butterfly Lycaena dispar batavus (Lepidoptera: Lycaenidae): Host plant versus habitat mediated effects. Eur J Entomol 97:363–367CrossRefGoogle Scholar
  66. Weeks JA (2003) Parasitism and ant protection alter the survival of the lycaenid Hemiargus isola. Ecol Entomol 28:228–232CrossRefGoogle Scholar
  67. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual appearance and the abundance of their host plants. Oecologia 63:23–29CrossRefGoogle Scholar
  68. Witek M, Barbero F, Markó B (2014) Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insect Soc 61:307–323CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Hungarian Department of Biology and EcologyBabeș–Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of EcologyUniversity of SzegedSzegedHungary
  3. 3.Department of Taxonomy and EcologyBabeș–Bolyai UniversityCluj-NapocaRomania

Personalised recommendations