Journal of Insect Conservation

, Volume 20, Issue 3, pp 477–483

Inbreeding depression in monarch butterflies

  • Andrew J. Mongue
  • Michelle V. Tsai
  • Marta L. Wayne
  • Jacobus C. de Roode
ORIGINAL PAPER

Abstract

Monarch butterflies and their unique system of multigenerational migration have long fascinated the public, and concerns for the fate of this charismatic insect have grown due to the consistent declines in overwintering colony size over the last 20 years. Risks to this migratory insect have been considered in terms of climate change, habitat and thus population fragmentation, and decreased host plant availability. However, another obvious danger, that of decreased heterozygosity resulting from decreasing population size, has yet to be explored. Here we report experimental evidence for immediate inbreeding depression in individuals from the migratory population. Inbred matings produced less viable eggs and inbred offspring had higher developmental mortality and shorter lifespans. We discuss these results in the context of monarch migration extinction risk and suggest that additional genetic monitoring should be undertaken to protect this iconic animal.

Keywords

Population dynamics Migration Conservation planning Genetics 

References

  1. Altizer SM (2001) Migratory behaviour and host–parasite co-evolution in natural populations of monarch butterflies infected with a protozoan parasite. Evolut Ecol Res 3:567–581Google Scholar
  2. Altizer S, Hobson KA, Davis AK, de Roode JC, Wassenaar LI (2015) Do healthy monarchs migrate farther? Tracking Natal origins of parasitized versus uninfected Monarch butterflies overwintering in Mexico. PLoS One 10:e0141371CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartel RA, Oberhauser KS, de Roode JC, Altizer SM (2011) Monarch butterfly migration and parasite transmission in eastern North America. Ecology 92:342–51Google Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2014). Lme4: linear mixed-effects models using S4 classes. R package version 1.1-6. http://cran.r-project.org/package=lme4
  5. Brower LP, Pyle RM (2004) The interchange of migratory monarchs between Mexico and the western United States, and the importance of floral corridors to the fall and spring migrations. Conservation of migratory pollinators and their nectar corridors in North America. Arizona-Sonora Desert Museum, Natural History of the Sonoran Desert Region, pp 144–166Google Scholar
  6. Brower LP, Calvert WH, Hedrick LE, Christian J (1977) Biological observations on an overwintering colony of monarch butterflies (Danaus plexippus, Danaidae) in Mexico. J Lepidopterists’ Soc 31:232–241Google Scholar
  7. Brower LP, Kust DR, Rendon-Salinas E, Serrano EG, Kust KR, Miller J, Fernandez del Rey C, Pape K (2004) Catastrophic winter storm mortality of monarch butterflies in Mexico during January 2002. The Monarch butterfly: biology and conservation. Cornell University Press, Ithaca, pp 151–166Google Scholar
  8. Brower LP, Taylor OR, Williams EH, Slayback DA, Zubieta RR, Ramír ez MI (2012) Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv Divers 5:95–100. doi:10.1111/j.1752-4598.2011.00142.x CrossRefGoogle Scholar
  9. Calvert WH (2004) Two methods of estimating overwintering monarch population size in Mexico. In: Oberhauser KS, Solensky MJ (eds) The Monarch butterfly: biology and conservation. Cornell University Press, Ithaca, pp 121–128Google Scholar
  10. Crnokrak P, Barrett SCH (2002) Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56:2347–2358CrossRefPubMedGoogle Scholar
  11. de Roode JC, Gold LR, Altizer S (2007) Virulence determinants in a natural butterfly-parasite system. Parasitology 134:657–668. doi:10.1017/S0031182006002009 CrossRefPubMedGoogle Scholar
  12. de Roode JC, Yates AJ, Altizer S (2008) Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. PNAS 105:7489–7494CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Roode JC, Chi J, Rarick RM, Altizer S (2009) Strength in numbers: high parasite burdens increase transmission of a protozoan parasite of monarch butterflies (Danaus plexippus). Oecologia 161:67–75CrossRefPubMedGoogle Scholar
  14. Drayton JM, Jennions MD (2011) Inbreeding and measures of immune function in the cricket Teleogryllus commodus. Behav Ecol 22:486–492CrossRefGoogle Scholar
  15. Fox CW, Scheibly KL, Reed DH (2008) Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution 62:2236–2249CrossRefPubMedGoogle Scholar
  16. Flockhart DTT, Pichancourt JB, Norris DR, Martin TG (2014) Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J Anim Ecol 84:155–165CrossRefPubMedGoogle Scholar
  17. Gilpin ME, Soulé ME (1986) Minimum viable populations: processes of species extinction. Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland (Mass.), pp 19–34Google Scholar
  18. Giuliano WM, Accamando AK, McAdams EJ (2004) Lepidoptera–habitat relationships in urban parks. Urban Ecosyst 7:361–370CrossRefGoogle Scholar
  19. Haikola S, Fortelius W, O’Hara RB, Kuussaari M, Wahlberg N, Saccheri IJ, Singer MC, Hanski I (2001) Inbreeding depression and the maintenance of genetic load in Melitaea cinxia metapopulations. Conserv Genet 2:325–335CrossRefGoogle Scholar
  20. Hall RJ, Altizer S, Bartel RA (2014) Greater migratory propensity in hosts lowers pathogen transmission and impacts. J Anim Ecol 83:1068–1077CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hedrick PW (1994) Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity 73:363–372CrossRefPubMedGoogle Scholar
  22. Hill Jr. HF, Wenner AM, Wells PH (1976) Reproductive behavior in an overwintering aggregation of Monarch butterflies. American Midland Naturalist 95:10–19. http://www.jstor.org/stable/2424229
  23. Howard E, Davis AK (2004) Documenting the spring movements of monarch butterflies with Journey North, a citizen science program. In: Oberhauser KS, Solensky MJ (eds) The Monarch butterfly: biology and conservation. Cornell University Press, Ithaca, pp 105–116Google Scholar
  24. Hughes PR, Radke CD, Renwick AA (1993) A simple, low-input method for continuous laboratory rearing of the monarch butterfly (Lepidoptera: Danaidae) for research. Am Entomol 39:109–111CrossRefGoogle Scholar
  25. Jeanpierre B, Oberhauser K, Freeman C (2005) Characteristics of professional development that effect change in secondary science teachers’ classroom practices. J Res Sci Teach 42:668–690CrossRefGoogle Scholar
  26. Kimura M, Maruyama T, Crow JF (1963) The mutation load in small populations. Genetics 48:1303PubMedPubMedCentralGoogle Scholar
  27. Lynch M, Gabriel W (1990) Mutation load and the survival of small populations. Evolution 44:1725–1737CrossRefGoogle Scholar
  28. Lyons JI, Pierce AA, Barribeau SM, Sternberg ED, Mongue AJ, de Roode JC (2012) Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Mol Ecol 21:3433–3444CrossRefPubMedGoogle Scholar
  29. Malcolm SB (1993) Conservation of monarch butterfly migration in North America: an endangered phenomenon. Biol Conserv Monarch Butterfly 38:357Google Scholar
  30. McLaughlin RE, Myers J (1970) Ophryocystis elektroscirrha sp. n., a Neogregarine Pathogen of the Monarch Butterfly Danaus plexippus (L.) and the Florida Queen Butterfly D. gilippus berenice Cramer. J Protozool 17:300–305. doi:10.1111/j.1550-7408.1970.tb02375.x CrossRefGoogle Scholar
  31. Mongue AJ, Ahmad MA, Tsai MV, de Roode JC (2014) Testing for cryptic female choice in monarch butterflies. Behav Ecol 26:386–395CrossRefGoogle Scholar
  32. Morris GM, Kline C, Morris SM (2015) Status of Danaus plexippus population in Arizona. J Lepidopterists’ Soc 69:91–107CrossRefGoogle Scholar
  33. Nieminen M, Singer MC, Fortelius W, Schöps K, Hanski I (2001) Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. Am Nat 157:237–244CrossRefPubMedGoogle Scholar
  34. Pierce AA, Zalucki MP, Bangura M, Udawatta M, Kronforst MR, Altizer S, Haeger JF, de Roode JC (2014) Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proc R Soc B Biol Sci 281:20142230. doi:10.1098/rspb.2014.2230 CrossRefGoogle Scholar
  35. R Development Core Team R. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org
  36. Rantala MJ, Viitaniemi H, Roff DA (2011) Effects of inbreeding on potential and realized immune responses in Tenebrio molitor. Parasitology 138:906–912Google Scholar
  37. Reid JM, Arcese P, Keller LF (2003) Inbreeding depresses immune response in song sparrows (Melospiza melodia): direct and inter-generational effects. Proc Biol Sci 270:2151–2157CrossRefPubMedPubMedCentralGoogle Scholar
  38. Saccheri IJ, Brakefield PM, Nichols RA (1996) Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae). Evolution 2000–2013Google Scholar
  39. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494Google Scholar
  40. Saccheri IJ, Brakefield PM, Nichols RA (2014) Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae). Evolution 50:2000–2013CrossRefGoogle Scholar
  41. Satterfield DA, Maerz JC, Altizer S (2015) Loss of migratory behaviour increases infection risk for a butterfly host. Proc R Soc B Biol Sci 282Google Scholar
  42. Urquhart FA (1976) Found at last—Monarchs winter home. National Geographic 150:161–173Google Scholar
  43. Urquhart FA, Urquhart NR (1978) Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus L.; Danaidae; Lepidoptera) in North America to the overwintering site in the Neovolcanic Plateau of Mexico. Can J Zool 56:1759–1764CrossRefGoogle Scholar
  44. Vane-Wright RI (1993) The Columbus hypothesis: an explanation for the dramatic 19th century range expansion of the monarch butterfly. Biol Conserv Monarch Butterfly 38:179Google Scholar
  45. Vidal O, Rendón-salinas E (2014) Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol Conserv 180:165–175. doi:10.1016/j.biocon.2014.09.041 CrossRefGoogle Scholar
  46. Vidal O, López-García J, Rendón-Salinas E (2014) Trends in Deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly biosphere reserve in Mexico. Conserv Biol 28:177–186CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wassenaar LI, Hobson A (1998) Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. Proc Natl Acad Sci USA 95:15436–15439CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zalucki MP, Clarke AR (2004) Monarchs across the Pacific: the Columbus hypothesis revisited. Biol J Linn Soc 82:111–121CrossRefGoogle Scholar
  49. Zalucki MP, Kitching RL (1982) The analysis and description of movement in adult Danaus plexippus L. (Lepidoptera: Danainae). Behaviour 80:174–198CrossRefGoogle Scholar
  50. Zhan S, Zhang W, Niitepõld K, Hsu J, Haeger JF, Zalucki MP, Altizer S, de Roode JC, Reppert SM, Kronforst MR (2014) The genetics of monarch butterfly migration and warning colouration. Nature 514:317–321CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andrew J. Mongue
    • 1
    • 2
  • Michelle V. Tsai
    • 1
  • Marta L. Wayne
    • 3
  • Jacobus C. de Roode
    • 1
  1. 1.Department of BiologyEmory UniversityAtlantaUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceUSA
  3. 3.Department of BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations