Journal of Insect Conservation

, Volume 20, Issue 3, pp 467–476 | Cite as

Herbivores, saprovores and natural enemies respond differently to within-field plant characteristics of wheat fields

  • Berta Caballero-LópezEmail author
  • José M. Blanco-Moreno
  • Juli Pujade-Villar
  • Daniel Ventura
  • Josep A. Sánchez-Espigares
  • F. Xavier Sans


Understanding ecosystem functioning in a farmland context by considering the variety of ecological strategies employed by arthropods is a core challenge in ecology and conservation science. We adopted a functional approach in an assessment of the relationship between three functional plant groups (grasses, broad-leaves and legumes) and the arthropod community in winter wheat fields in a Mediterranean dryland context. We sampled the arthropod community as thoroughly as possible with a combination of suction catching and flight-interception trapping. All specimens were identified to the appropriate taxonomic level (family, genus or species) and classified according to their form of feeding: chewing-herbivores, sucking-herbivores, flower-consumers, omnivores, saprovores, parasitoids or predators. We found, a richer plant community favoured a greater diversity of herbivores and, in turn, a richness of herbivores and saprovores enhanced the communities of their natural enemies, which supports the classical trophic structure hypothesis. Grass cover had a positive effect on sucking-herbivores, saprovores and their natural enemies and is probably due to grasses’ ability to provide, either directly or indirectly, alternative resources or simply by offering better environmental conditions. By including legumes in agroecosystems we can improve the conservation of beneficial arthropods like predators or parasitoids, and enhance the provision of ecosystem services such as natural pest control.


Functional approach Plant–arthropod interaction Biological control Legumes Ecosystem services Insect functional traits 



We are indebted to Lluís Tarés and Joan Ramon Salla for their willingness to participate in this project and for generously allowing us to work in their fields. We are grateful to Amador Viñolas (Coleoptera), Miguel Carles-Tolrà (Diptera) and Marcos Roca-Cusachs (Hemiptera) for the huge task of identifying specimens and for offering information about arthropod feeding habits, which was of great help when deciding upon the most appropriate feeding categories. We would also like to thank Albert Ferré and Arnau Mercadé (Cartography group, Plant Biology Department, University of Barcelona) for their technical assistance with the GIS analyses in the margin assessment. The authors would like to thank the two anonymous referees whose suggestions significantly contributed to improve our manuscript. This research represents part of the PhD project by the leading author and was funded by the FI Fellowship (Agència de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya) and the Spanish Ministry of Economy and Competitiveness (CGL2006-c03-01/BOS; CGL2009-13497-c02-01; CGL2012-39442).

Supplementary material

10841_2016_9879_MOESM1_ESM.doc (220 kb)
Supplementary material 1 (DOC 220 kb)


  1. Albajes R, Lumbierres B, Pons X (2011) Two heteropteran predators in relation to weed management in herbicide-tolerant corn. Biol Control 59:30–36. doi: 10.1016/j.biocontrol.2011.03.008 CrossRefGoogle Scholar
  2. Altieri MA, Nicholls CI (1999) Biodiversity, ecosystems function and pest management agricultural systems. In: Collins WW, Qualset CO (eds) Biodiversity in ecosystems. CRC Press, Boca Raton, pp 69–84Google Scholar
  3. Amaral DSSL, Venzon M, Duarte MVA, Sousa FF, Pallini A, Harwood JD (2013) Non-crop vegetation associated with chili pepper agroecosystems promote the abundance and survival of aphid predators. Biol Control 64:338–346. doi: 10.1016/j.biocontrol.2012.12.006 CrossRefGoogle Scholar
  4. Antvogel H, Bonn A (2001) Environmental parameters and microspatial distribution of insects: a case study of carabids in an alluvial forest. Ecography 24:470–482CrossRefGoogle Scholar
  5. Baayen RH (2008) languageR: data sets and functions with “analyzing linguistic data: a practical introduction to statistics”. R package version 0.953Google Scholar
  6. Balmford A, Green MJB, Murray MG (1996a) Using higher-taxon richness as a surrogate for species richness: I. Regional tests. Proc R Soc Lond Biol Sci Ser B 263:1267–1274. doi: 10.1098/rspb.1996.0186 CrossRefGoogle Scholar
  7. Balmford A, Jayasuriya AHM, Green MJB (1996b) Using higher-taxon richness as a surrogate for species richness: II. Local applications. Proc R Soc Lond Biol Sci Ser B 263:1571–1575. doi: 10.1098/rspb.1996.0230 CrossRefGoogle Scholar
  8. Banks JE, Bommarco R, Ekbom B (2008) Population response to resource separation in conservation biological control. Biol Control 47:141–146CrossRefGoogle Scholar
  9. Bates D, Maechler M, Dai B (2008) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-28.
  10. Biaggini M, Consorti R, Dapporto L, Dellacasa M, Paggetti E, Corti C (2007) The taxonomic level order as a possible tool for rapid assessment of Arthropod diversity in agricultural landscapes. Agric Ecosyst Environ 122:183–191CrossRefGoogle Scholar
  11. Bianchi FJJA, Wäckers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408CrossRefGoogle Scholar
  12. Birkhofer K, Fliessbach A, Wise DH, Scheu S (2008) Generalist predators in organically and conventionally managed grass-clover fields: implications for conservation biological control. Ann Appl Biol 153:271–280Google Scholar
  13. Bolòs O, Vigo J, Masalles RM, Ninot JM (2005) Flora manual dels Països Catalans, 3rd edn. Pòrtic, Barcelona.Google Scholar
  14. Caballero-López B, Blanco-Moreno JM, Pérez N, Pujade-Villar J, Ventura D, Oliva F, Sans FX (2010) A functional approach to assessing plant–arthropod interaction in winter wheat. Agric Ecosyst Environ 137:288–293CrossRefGoogle Scholar
  15. Cardoso P, Silva I, de Oliveira NG, Serrano ARM (2004) Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 117:453–459CrossRefGoogle Scholar
  16. Casas J, Djemai I (2002) Canopy architecture and multitrophic interactions. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 174–196CrossRefGoogle Scholar
  17. Clough Y, Holzschuh A, Gabriel D, Purtauf T, Kleijn D, Kruess A, Steffan-Dewenter I, Tscharntke T (2007) Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. J Appl Ecol 44:804–812. doi: 10.1111/j.1365-2664.2007.01294 CrossRefGoogle Scholar
  18. Consell Català de la Producció Agrària Ecològica (2013) Guia per a la certificació ecològica i informació pública. Generalitat de Catalunya, BarcelonaGoogle Scholar
  19. De Souza ALT, Martins RP (2004) Distribution of plant-dwelling spiders: inflorescences versus vegetative branches. Austral Ecol 29:342–349. doi: 10.1111/j.1442-9993.2004.01371.x CrossRefGoogle Scholar
  20. Duffield SJ, Bryson RJ, Young JEB, Sylvester-Bradley R, Scott RK (1997) The influence of nitrogen fertiliser on the population development of the cereal aphids Sitobion avenae (F) and Metopolophium dirhodum (Wlk) on field grown winter wheat. Ann Appl Biol 130:13–26. doi: 10.1111/j.1744-7348.1997.tb05779 CrossRefGoogle Scholar
  21. EEC (2007) Council Regulation (EC) No 2007, of 28 June 2092/91, on organic production and labelling of organic products and repealing Regulation (EEC)Google Scholar
  22. Elliott NC, Tao FL, Fuentes-Granados R, Giles KL, Elliott DT, Greenstone MH, Shufran KA, Royer TA (2006) D-Vac sampling for predatory arthropods in winter wheat. Biol Control 38:325–330CrossRefGoogle Scholar
  23. Evans EW (2008) Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies—a review. Eur J Entomol 105:369–380CrossRefGoogle Scholar
  24. Fuller RJ, Norton LR, Feber RE, Johnson PJ, Chamberlain DE, Joys AC, Mathews F, Stuart RC, Townsend MC, Manley WJ, Wolfe MS, Macdonald DW, Firbank LG (2005) Benefits of organic farming to biodiversity vary among taxa. Biol Lett 1:431–434CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ghorbani R, Mousavi SK, Nazari S, Hatami B (2010) Study of the effect of irrigation and nitrogen fertilizer on sugar beet growth and population dynamism of Empoasca decipiens (Hom.: Cicadellidae) and Thrips tabaci (Thys.: Thripidae). Appl Entomol Phytopathol 78:61–80Google Scholar
  26. Grimm NB (1995) Why link species and ecosystems? A perspective from ecosystem ecology. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman & Hall, New York, pp 5–15CrossRefGoogle Scholar
  27. Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops MH (2001) Contrasting effects of plant richness and composition on insects communities: a field experiment. Am Nat 158:17–35CrossRefPubMedGoogle Scholar
  28. Harwood JD, Sunderland KD, Symondson WOC (2001) Living where the food is: web location by linyphiid wheat, in relation to prey availability in winter. J Appl Ecol 38:88–99CrossRefGoogle Scholar
  29. Hasken KH, Poehling HM (1995) Effects of different intensities of fertilisers and pesticides on aphids and aphids predators in winter wheat. Agric Ecosyst Environ 52:45–50CrossRefGoogle Scholar
  30. Hawes C, Haughton AJ, Bohanb DA, Squire GR (2009) Functional approaches for assessing plant and invertebrate abundance patterns in arable systems. Basic Appl Ecol 10:34–42. doi: 10.1016/j.baae.2007.11.007 CrossRefGoogle Scholar
  31. Hodek I, Honek A (1996) Ecology of coccinellidae. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  32. Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130CrossRefGoogle Scholar
  33. Hyvönen T, Huusela-Veistola E (2008) Arable weeds as indicators of agricultural intensity. A case study from Finland. Biol Conserv 141:2857–2864CrossRefGoogle Scholar
  34. Isaacs R, Tuell J, Fiedler A, Gardiner M, Landis D (2009) Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Front Ecol Environ 7:196–203CrossRefGoogle Scholar
  35. Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E, Groth J (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293CrossRefGoogle Scholar
  36. Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K (2000) Numerical responses of different trophic groups of invertebrates to manipulation of plant diversity in grasslands. Oecologia 125:271–282. doi: 10.1007/s004420000450 CrossRefPubMedGoogle Scholar
  37. Kutner MH, Nachtsheim CJ, Neter J (2004) Applied linear regression models, 4th edn. McGraw-Hill, IrwinGoogle Scholar
  38. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropods pests in agriculture. Annu Rev Entomol 45(1):175–201CrossRefPubMedGoogle Scholar
  39. Letourneau DK, Goldstein B (2001) Pest damage and arthropod community structure in organic vs. conventional tomato production in California. J Appl Ecol 38:557–570CrossRefGoogle Scholar
  40. Lundgren JG, Seagraves MP (2011) Physiological benefits of nectar feeding by a predatory beetle. Biol J Linn Soc 104:661–669. doi: 10.1111/j.1095-8312.2011.01729.x CrossRefGoogle Scholar
  41. Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U, Masters G (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697CrossRefPubMedGoogle Scholar
  42. Maleque MA, Ishii HT, Maeto K (2006) The use of arthropods as indicators of ecosystem integrity in forest management. J For 104:113–117Google Scholar
  43. McCann KS (2000) The diversity–stability debate. Nature 405:228–233CrossRefPubMedGoogle Scholar
  44. Moreby SJ, Aebischer NJ, Southway SE, Sotherton NW (1994) A comparison of the flora and arthropod fauna of organically and conventionally grown winter-wheat in southern England. Ann Appl Biol 125:13–27CrossRefGoogle Scholar
  45. Müller C, Godfray H (1998) The response of aphid secondary parasitoids to different patch densities of their host. Biocontrol 43:129–139CrossRefGoogle Scholar
  46. Murdoch WW, Evans FC, Peterson CH (1972) Diversity and pattern in plants and insects. Ecology 53:819–829CrossRefGoogle Scholar
  47. Nicholls CI, Altieri MA (2012) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33:257–274. doi: 10.1007/s13593-012-0092-y CrossRefGoogle Scholar
  48. Norris RF, Kogan M (2000) Interactions between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sci 48:94–158CrossRefGoogle Scholar
  49. Perner J, Voigt W (2007) Measuring the complexity of interaction webs using vertical links between functional groups. Agric Ecosyst Environ 120:192–200CrossRefGoogle Scholar
  50. Pinheiro JB, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer, New YorkCrossRefGoogle Scholar
  51. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. R Dev. Core Team, ViennaGoogle Scholar
  52. Rostami M, Zamani AA, Goldasteh S, Shoushtari RV, Kheradmand K (2012) Influence of nitrogen fertilization on biology of Aphis gossypii (Hemiptera: Aphididae) reared on Chrysanthemum indicum (Asteraceae). J Plant Prot Res 52:118–121. doi: 10.2478/v10045-012-0019-2 CrossRefGoogle Scholar
  53. Schaffers AP, Raemakers IP, Sýkora KV, Ter Braak CJF (2008) Arthropods assemblages are best predicted by plant species composition. Ecology 89:782–794CrossRefPubMedGoogle Scholar
  54. Shreeve TG, Dennis RLH, Roy DB, Mos D (2001) An ecological classification of British butterflies: ecological attributes and biotope occupancy. J Insect Conserv 5:145–161CrossRefGoogle Scholar
  55. Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070CrossRefGoogle Scholar
  56. Stewart AJA, Wright AF (1995) A new inexpensive suction apparatus for sampling arthropods in grassland. Ecol Entomol 20:98–102CrossRefGoogle Scholar
  57. Vucic-Pestic O, Birkhofer K, Rall BC, Scheu S, Brose U (2010) Habitat structure and prey aggregation determine the functional response in a soil predator–prey interaction. Pedobiologia 53:307–312CrossRefGoogle Scholar
  58. Wardle DA, Nicholson KS, Bonner KI, Yeates GW (1999) Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biol Biochem 31:1691–1706. doi: 10.1016/S0038-0717(99)00089-9 CrossRefGoogle Scholar
  59. Wickramasinghe LP, Harris S, Jones G (2004) Abundance and species richness of nocturnal insects on organic and conventional farms: effects of agricultural intensification on bat foraging. Conserv Biol 18:1283–1292. doi: 10.1111/j.1523-1739.2004.00152 CrossRefGoogle Scholar
  60. Willmer P, Hughes J, Woodford J, Gordon S (1996) The effects of crop microclimate and associated physiological constraints on the seasonal and diurnal distribution patterns of raspberry beetle (Byturus tomentosus) on the host plant Rubus idaeus. Ecol Entomol 21:87–97CrossRefGoogle Scholar
  61. Wilson RJ, Bennie J, Lawson CR, Pearson D, Ortuzar-Ugarte G, Gutierrez D (2014) Population turnover, habitat use and microclimate at the contracting range margin of a butterfly. J Insect Conserv 19:205–216. doi: 10.1007/s10841-014-9710-0 CrossRefGoogle Scholar
  62. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Berta Caballero-López
    • 1
    • 4
    Email author
  • José M. Blanco-Moreno
    • 2
    • 4
  • Juli Pujade-Villar
    • 3
  • Daniel Ventura
    • 5
    • 6
  • Josep A. Sánchez-Espigares
    • 7
  • F. Xavier Sans
    • 2
    • 4
  1. 1.Laboratory of Nature, Department of ArthropodsNatural Sciences Museum of BarcelonaBarcelonaSpain
  2. 2.Department of Plant Biology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  3. 3.Department of Animal Biology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  4. 4.IRBioUniversity of BarcelonaBarcelonaSpain
  5. 5.Department of Food Industries and Environmental Sciences, Polytechnic SchoolUniversity of VicVicSpain
  6. 6.Functional Ecology and Climate Change Group (GAMES - ECOFUN)Forest Sciences Centre of Catalonia (CTFC)SolsonaSpain
  7. 7.Department of Statistics and Operations ResearchPolytechnic University of CataloniaBarcelonaSpain

Personalised recommendations