Advertisement

Journal of Insect Conservation

, Volume 20, Issue 3, pp 433–445 | Cite as

Summer floods shape meadow butterfly communities in a floodplain nature reserve in Central Europe

  • Rebecca FiesEmail author
  • Dominik Rabl
  • Christian H. Schulze
  • Konrad Fiedler
ORIGINAL PAPER

Abstract

How flooding regimes shape temperate-zone butterfly communities has received little attention. At the river Danube in eastern Austria, a levee has largely interrupted natural river dynamics since the late nineteenth century. Only a fraction of the floodplain area still experiences annual summer inundations after snow-melt in the Alps. We surveyed meadow butterfly communities on either side of the levee in a year with an unusually strong flood (2013), and in a season with a weak flood typical for the region (2012). Altogether we observed 67 butterfly species. Butterfly abundance and species richness were lower on meadows with stronger flood impact, but differences were modest. In contrast, species composition differed prominently relative to flooding regime and nectar availability. Grass-feeding species tended to be rarer on flooded meadows, while Brassicaceae-feeding species were more prevalent on nutrient-rich flood-prone meadows. Highly dispersive butterflies made up a larger share on flooded meadows, whereas highly philopatric species were relatively more common at sites with little or no inundation. These results indicate that summer inundations at the river Danube act as filters for the local species composition of butterflies on floodplain meadows. Local resource availability and the differential potential of species to re-colonize meadows after catastrophic floods are likely drivers of these differences. Effects of inundations were not consistently stronger in a year of a catastrophic flood than in a normal season. Butterfly communities on non-flooded meadows had a higher regional conservation value.

Keywords

Butterfly diversity Environmental filtering Floodplain ecosystems Inundation Species richness Species composition 

Notes

Acknowledgments

We thank the Nationalpark Donau-Auen, and especially Dr. Christian Baumgartner and Karoline Zsak, for arranging the opportunity to conduct this study and Barabara Reischl for her support with the illustrations. Manuela Grijincu and Hannes Horn helped with data collection in 2012. This paper benefitted from constructive comments provided by two anonymous reviewers. Field work was supported through funds from the Faculty of Life Sciences, Univ. of Vienna.

Supplementary material

10841_2016_9876_MOESM1_ESM.docx (117 kb)
Supplementary material 1 (DOCX 116 kb)

References

  1. Adis J, Junk WJ (2002) Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biol 47:711–731. doi: 10.1046/j.1365-2427.2002.00892.x CrossRefGoogle Scholar
  2. Anderson M, Gorley RN, Clarke RK (2008) Permanova+ for Primer: Guide to software and statistical methods. Primer-E, PlymouthGoogle Scholar
  3. Ballinger A, Lake P, Nally RM (2007) Do terrestrial invertebrates experience floodplains as landscape mosaics? Immediate and longer-term effects of flooding on ant assemblages in a floodplain forest. Oecologia 152:227–238CrossRefPubMedGoogle Scholar
  4. Bink FA (1992) Ecologische atlas van de dagvlinders van Noordwest-Europa. Schuyt, HaarlemGoogle Scholar
  5. Bonn A, Hagen K, Wohlgemuth-von Reiche D (2002) The significance of flood regimes for carabid beetle and spider communities in riparian habitats, a comparison of three major rivers in Germany. River Res Appl 18:43–64CrossRefGoogle Scholar
  6. Croxton PJ, Hann JP, Greatorex-Davies JN, Sparks TH (2005) Linear hotspots? The floral and butterfly diversity of green lanes. Biol Conserv 121:579–584CrossRefGoogle Scholar
  7. Demetz A, Fiedler K, Dreschke T, Schulze CH (2013) Natural floodplain dynamics shape grasshopper assemblages of meadows in the Donau-Auen National Park (Austria). 5th Symp Res Protected Areas, Mittersill, AustriaGoogle Scholar
  8. Dziock F, Gerisch M, Siegert M, Hering I, Scholz M, Ernst R (2011) Reproducing or dispersing? Using trait based habitat templet models to analyse Orthoptera response to flooding and land use. Agric Ecosyst Environ 145:85–94. doi: 10.1016/j.agee.2011.07.015 CrossRefGoogle Scholar
  9. Ebert G (1993) Die Schmetterlinge Baden-Württembergs, Band 1 Tagfalter 1. 1991 Eugen Ulmer, StuttgartGoogle Scholar
  10. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd ed. Scr Geobot 18:9–166Google Scholar
  11. Fiedler K, Truxa C (2012) Species richness measures fail in resolving diversity patterns of speciose forest moth assemblages. Biodiv Conserv 21:2499–2508. doi: 10.1007/s10531-012-0311-5 CrossRefGoogle Scholar
  12. Gerisch M, Schanowski A, Figura W, Gerken B, Dziock F, Henle K (2006) Carabid beetles (Coleoptera, Carabidae) as indicators of hydrological site conditions in floodplain grasslands. Int Rev Hydrobiol 91:326–340CrossRefGoogle Scholar
  13. Gotelli NJ, Colwell RK (2011) Estimating species richness. Biol Divers Front Meas Assess 12:39–54Google Scholar
  14. Gratzer M, Rabitsch W, Schulze CH (2012) Impact of flooding on true bug communities (Heteroptera) on meadows of the Morava River floodplains, Eastern Austria. 5th Symp Res Proteced Areas, Mittersill, AustriaGoogle Scholar
  15. Holl KD (1995) Nectar resources and their influence on butterfly communities on reclaimed coal surface mines. Restor Ecol 3:76–85CrossRefGoogle Scholar
  16. Höttinger H, Pendl M, Wiemers M, Pospisil A (2013) Insekten in Wien: Tagfalter. Österr Ges Entomofaunistik, ViennaGoogle Scholar
  17. Huemer P (2013) Die Schmetterlinge Österreichs (Lepidoptera). Systematische und faunistische Checkliste. Tiroler Landesmuseen, InnsbruckGoogle Scholar
  18. Hula V, Konvicka M, Pavlicko A, Fric Z (2004) Marsh Fritillary (Euphydiyas aurinia) in the Czech Republic: monitoring, metapopulation structure and conservation of an endangered butterfly. Entomol Fenn 15(4):231–241Google Scholar
  19. Joy J, Pullin AS (1997) The effects of flooding on the survival and behaviour of overwintering large heath butterfly Coenonympha tullia larvae. Biol Conserv 82:61–66. doi: 10.1016/s0006-3207(97)00006-2 CrossRefGoogle Scholar
  20. Kajzer-Bonk J, Nowicki P, Bonk M, Skórka P, Witek M, Woyciechowski M (2013) Local populations of endangered Maculinea (Phengaris) butterflies are flood resistant. J Insect Conserv 17:1105–1112. doi: 10.1007/s10841-013-9591-7 CrossRefGoogle Scholar
  21. Koh LP, Sodhi NS, Brook BW (2004) Ecological correlates of extinction proneness in tropical butterflies. Conserv Biol 18:1571–1578CrossRefGoogle Scholar
  22. Konvicka M, Nedved O, Fric Z (2002) Early-spring floods decrease the survival of hibernating larvae of a wetland-inhabiting population of Neptis rivularis (Lepidoptera: Nymphalidae). Acta Zool Hung 48:79–88Google Scholar
  23. Köppel C (1997) Die Großschmetterlinge (Makrolepidoptera) der Rastatter Rheinaue: Habitatwahl sowie Überflutungstoleranz und Überlebensstrategien bei Hochwasser. Eitschberger, MarkleuthenGoogle Scholar
  24. Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:355–361CrossRefGoogle Scholar
  25. Krauss J, Steffan-Dewenter I, Müller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474CrossRefGoogle Scholar
  26. Latterell JJ, Scott Bechtold J, O’Keefe TC, Van Pelt R, Naiman RJ (2006) Dynamic patch mosaics and channel movement in an unconfined river valley of the Olympic Mountains. Freshwater Biol 51:523–544. doi: 10.1111/j.1365-2427.2006.01513.x CrossRefGoogle Scholar
  27. León-Cortés JL, Lennon JJ, Thomas CD (2003) Ecological dynamics of extinct species in empty habitat networks. 2. The role of host plant dynamics. Oikos 102:465–477CrossRefGoogle Scholar
  28. Maes D, Van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276CrossRefGoogle Scholar
  29. Mucina L, Grabherr G, Ellmauer T, Wallnoefer S (1993) Die Pflanzengesellschaften Österreichs. Fischer, JenaGoogle Scholar
  30. Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Meth Ecol Evol 2:278–282CrossRefGoogle Scholar
  31. Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514. doi: 10.1016/j.tree.2009.03.018 CrossRefPubMedGoogle Scholar
  32. Rothenbuecher J, Schaefer M (2005) Conservation of leafhoppers in floodplain grasslands—trade-off between diversity and naturalness in a northern German national park. J Insect Conserv 9:335–349. doi: 10.1007/s10841-005-0514-0 CrossRefGoogle Scholar
  33. Saarinen K, Valtonen A, Jantunen J, Saarnio S (2005) Butterflies and diurnal moths along road verges: does road type affect diversity and abundance? Biol Conserv 123:403–412CrossRefGoogle Scholar
  34. Schultz CB, Dlugosch KM (1999) Nectar and hostplant scarcity limit populations of an endangered Oregon butterfly. Oecologia 119:231–238CrossRefGoogle Scholar
  35. Severns PM, Boldt L, Villegas S (2006) Conserving a wetland butterfly: quantifying early lifestage survival through seasonal flooding, adult nectar, and habitat preference. J Insect Conserv 10:361–370. doi: 10.1007/s10841-006-9011-3 CrossRefGoogle Scholar
  36. Shahabuddin G, Herzner GA, Aponte CR, del Gomez MC (2000) Persistence of a frugivorous butterfly species in Venezuelan forest fragments: the role of movement and habitat quality. Biodivers Conserv 9:1623–1641CrossRefGoogle Scholar
  37. Shapiro AM (2002) The Californian urban butterfly fauna is dependent on alien plants. Divers Distrib 8:31–40CrossRefGoogle Scholar
  38. Sonntag G (1981) Öko-ethologische Untersuchungen zur Sexualbiologie des Schachbrettfalters (Agapetes galathea L.) unter besonderer Berücksichtigung thermobiologischer Aspekte. Z Tierpsychol 56:169–186CrossRefGoogle Scholar
  39. Stettmer C, Bräu M, Gros P, Wanninger O (2011) Die Tagfalter Bayerns und Österreichs. 2nd edn. Bayerische Akademie für Naturschutz und Landschaftspflege, LaufenGoogle Scholar
  40. Strausz M, Fiedler K, Franzén M, Wiemers M (2012) Habitat and host plant use of the Large Copper Butterfly Lycaena dispar in an urban environment. J Insect Conserv 16:709–721CrossRefGoogle Scholar
  41. Thomas JA (1983) The ecology and conservation of Lysandra bellargus (Lepidoptera: Lycaenidae) in Britain. J Appl Ecol 20:59–83CrossRefGoogle Scholar
  42. Thomas CD, Jones TM (1993) Partial recovery of a skipper butterfly (Hesperia comma) from population refuges: lessons for conservation in a fragmented landscape. J Anim Ecol 62:472–481CrossRefGoogle Scholar
  43. Thomas J et al (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc London B 268:1791–1796CrossRefGoogle Scholar
  44. Tockner K, Schiemer F, Ward JV (1998) Conservation by restoration: the management concept for a river-floodplain system on the Danube River in Austria. Aquat Conserv Mar Freshwater Ecosyst 8:71–86CrossRefGoogle Scholar
  45. Tropek R, Konvicka M (2010) Forest eternal? Endemic butterflies of the Bamenda highlands, Cameroon, avoid close-canopy forest. Afr J Ecol 48:428–437CrossRefGoogle Scholar
  46. Truxa C, Fiedler K (2012) Down in the flood? How moth communities are shaped in temperate floodplain forests. Insect Conserv Divers 5:389–397CrossRefGoogle Scholar
  47. Van Helsdingen PJ (1997) The spiders (Araneida) of Pollardstown Fen, Co Kildare, Ireland. Irish Nat J 25:396–404Google Scholar
  48. Wahlberg N, Klemetti T, Hanski I (2002) Dynamic populations in a dynamic landscape: the metapopulation structure of the marsh fritillary butterfly. Ecography 25:224–232CrossRefGoogle Scholar
  49. Webb MR, Pullin AS (1998) Effects of submergence by winter floods on diapausing caterpillars of a wetland butterfly, Lycaena dispar batavus. Ecol Entomol 23:96–99. doi: 10.1046/j.1365-2311.1998.00105.x CrossRefGoogle Scholar
  50. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 63:23–29CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rebecca Fies
    • 1
    Email author
  • Dominik Rabl
    • 1
  • Christian H. Schulze
    • 1
  • Konrad Fiedler
    • 1
  1. 1.Division of Tropical Ecology and Animal BiodiversityUniversity of ViennaViennaAustria

Personalised recommendations