Journal of Insect Conservation

, Volume 20, Issue 2, pp 325–337 | Cite as

Wild bee pollination networks in northern New England

  • Erika M. Tucker
  • Sandra M. Rehan


Conserving and maintaining a diverse assemblage of wild bees is essential for a healthy and functioning ecosystem, as species are uniquely evolved to deliver specific plant–pollination requirements. Understanding the biology and ecology of bees in poorly studied regions is the first step towards conservation. Detailed surveys in New Hampshire reveal a broad diversity of 118 species of wild bees in different guilds and habitats including 17 bee species representing new state records. Network analyses reveal a complex community structure and relatively poorly connected plant–pollinator associations, thus species may be susceptible to disturbance. Phenological analyses document that at least one representative of five native bee families was present throughout the foraging season and both abundance and diversity were highest in June and July. This study provides important baseline information on bee abundance, diversity, phenology, and host plant associations necessary for future conservation efforts.


Plant–pollinator interactions Apoidea Bee phenology Ecological associations Hymenoptera Biodiversity Bipartite network 



We thank Dusty Durant, Elizabeth Haas, Robert Hafford and Wyatt Shell for their help with field collections and specimen processing. We also thank Sam Droege and Joan Milam for providing reference material provided support for this research. This work is supported by the USDA National Institute of Food and Agriculture, Hatch project 1004515, the New Hampshire Agricultural Experiment Station and the Tuttle Foundation.

Supplementary material

10841_2016_9870_MOESM1_ESM.docx (25.2 mb)
Supplementary material 1 (DOCX 25763 kb)


  1. Ascher JS, Kornbluth S, Goelet RG (2014) Bees (Hymenoptera: Apoidea: Anthophila) of Gardiners Island, Suffolk County, New York. Northeast Nat 21:47–71CrossRefGoogle Scholar
  2. Bailes EJ, Ollerton J, Pattrick JG, Glover BJ (2015) How can understanding of plant–pollinator interactions contribute to global food security? Curr Opin Plant 26:72–79CrossRefGoogle Scholar
  3. Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci USA 110:4656–4660CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238CrossRefPubMedGoogle Scholar
  5. Burkle LA, Marlin JC, Knight TM (2013) Plant–pollinator interactions over 120 years: loss of species, co-occurrence and function. Science 339:1611–1615CrossRefPubMedGoogle Scholar
  6. Burnham KP, Overton WS (1978) Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika 65:625–633CrossRefGoogle Scholar
  7. Burnham KP, Overton WS (1979) Robust estimation of population size when capture probabilities vary among animals. Ecology 60:927–936CrossRefGoogle Scholar
  8. Bushmann SL, Drummond FA (2015) Abundance and diversity of wild bees (Hymenoptera: Apoidea) found in lowbush blueberry growing regions of downeast Maine. Environ Entomol 44:975–989. doi: 10.1093/ee/nvv082 CrossRefPubMedGoogle Scholar
  9. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67CrossRefPubMedGoogle Scholar
  11. Chandler DS, Peck SB (1992) Diversity and seasonality of Leiodid Beetles (Coleoptera: Leiodidae) in an old-growth and a 40-year-old forest in New Hampshire. Environ Entomol 21:1283–1293CrossRefGoogle Scholar
  12. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  13. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791CrossRefPubMedGoogle Scholar
  14. Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217CrossRefGoogle Scholar
  15. Colla SR, Packer L (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodivers Conserv 17:1379–1391CrossRefGoogle Scholar
  16. Colla SR, Gadallah F, Richardson L, Wagner D, Gall L (2012) Assessing declines of North American bumble bees (Bombus spp.) using museum specimens. Biodivers Conserv 21:3585–3595CrossRefGoogle Scholar
  17. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B 345:101–118CrossRefGoogle Scholar
  18. Dormann CF, Gruber B, Fruend J (2008) Introducing the bipartite package: analysing ecological networks. R news 8:8–11Google Scholar
  19. Dormann CF, Fruend J, Bluethgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24CrossRefGoogle Scholar
  20. Droege S (2015) The very handy manual: how to catch and identify bees and manage a collection. USGS Native Bee Inventory and Monitoring LabGoogle Scholar
  21. Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922CrossRefPubMedPubMedCentralGoogle Scholar
  22. Galeano J, Pastor JM, Iriondo JM (2009) Weighted-interaction nestedness estimator (WINE): a new estimator to calculate over frequency matrices. Environ Model Softw 24:1342–1346CrossRefGoogle Scholar
  23. Gallai N, Salles J-M, Settele J, Vaissiere BE (2009) Economic valuation of the vulnerability of world agriculture. Ecol Econ 68:810–821CrossRefGoogle Scholar
  24. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhoffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipolito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Rickets TH, Rundlof M, Seymour CL, Schuepp C, Szentgyorgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611CrossRefPubMedGoogle Scholar
  25. Garibaldi LA, Bartomeus I, Bommarco R, Klein AM, Cunningham SA, Aizen MA, Boreux V, Garratt MPD, Carvalheiro LG, Kremen C, Morales CL, Schuepp C, Chacoff NP, Freitas BM, Gagic V, Holzschuh A, Klatt BK, Krewenka KM, Krishnan S, Mayfield MM, Motzke I, Otieno M, Petersen J, Potts SG, Ricketts TH, Rundlof M, Sciligo A, Sinu PA, Steffan-Dewenter I, Taki H, Tscharntke T, Vergara CH, Viana BF, Woyciechowski M (2015) Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J Appl Ecol 52:1436–1444CrossRefGoogle Scholar
  26. Gibbs J (2011) Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 3073:1–216Google Scholar
  27. Gill RJ, Baldock KCR, Brown MJF, Cresswell JE, Dicks LV, Fountain MT, Garratt MPD, Gough LA, Heard MS, Holland JM, Ollerton J, Stone GN, Tang CQ, Vanbergen AJ, Vogler AP, Woodward G, Arce AN, Boatman ND, Brand-Hardy R, Breeze TD, Green M, Hartfield CM, O’Connor RS, Osborne JL, Phillips J, Sutton PB, Potts SG (2016) Protecting an ecosystem service: approaches to understanding and mitigating threats to wild insect pollinators. Adv Ecol Res 54:135–206CrossRefGoogle Scholar
  28. Goldstein PZ, Ascher JS (2016) Taxonomic and behavioral composition of an island fauna: a survey of bees (Hymenopter: Apoidea: Anthophila) on Martha’s Vineyard, Massachusetts. Proc Entomol Soc Wash 118:37–92. doi: 10.4289/0013-8797.118.1.37 CrossRefGoogle Scholar
  29. Grixti JC, Packer L (2006) Changes in the bee fauna (Hymenoptera: Apoidea) of an old field site in southern Ontario, revisited after 34 years. Can Entomol 138:147–164CrossRefGoogle Scholar
  30. Julier HE, Roulston TH (2009) Wild bee abundance and pollination service in cultivated pumpkins: farm management, nesting behavior and landscape effects. J Econ Entomol 102:563–573CrossRefPubMedGoogle Scholar
  31. Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180CrossRefPubMedGoogle Scholar
  32. Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–312CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koh I, Lonsdorf EV, Williams NM, Brittain C, Isaacs R, Gibbs J, Ricketts TH (2016) Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc Natl Acad Sci USA 113:140–145CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vazquez P, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein M, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314CrossRefPubMedGoogle Scholar
  35. Matteson KC, Ascher JS, Langellotto GA (2008) Bee richness and abundance in New York City urban gardens. Ann Entomol Soc Am 101:140–150CrossRefGoogle Scholar
  36. Memmott J (1999) The structure of a plant–pollinator food web. Ecol Lett 2:276–280CrossRefGoogle Scholar
  37. Michener CD, McGinley RJ, Danforth BN (1994) The bee genera of North and Central America. Smithsonian Institution Press, WashingtonGoogle Scholar
  38. Minckley RL, Cane JH, Kervin L, Roulston TH (1999) Spatial predictability and resource specialization of bees (Hymenoptera: Apoidea) at a superabundant, widespread resource. Biol J Linn Soc 67:119–147CrossRefGoogle Scholar
  39. Mitchell TB (1960) Bees of the eastern United States, vol 1. Technical Bulletin No 141, North Carolina Agricultural Experiment Station. Raleigh, North CarolinaGoogle Scholar
  40. Mitchell TB (1962) Bees of the eastern United States, vol 2. Technical Bulletin No 152, North Carolina Agricultural Experiment Station. Raleigh, North CarolinaGoogle Scholar
  41. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326CrossRefGoogle Scholar
  42. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  43. Rehan SM, Sheffield CS (2011) Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae) of eastern North America. Zootaxa 2873:35–50Google Scholar
  44. Richards MH, Rutgers-Kelly A, Gibbs J, Vickruck JL, Rehan SM, Sheffield CS (2011) Bee diversity in naturalizing patches of Carolinian grasslands in southern Ontario, Canada. Can Entomol 143:279–299CrossRefGoogle Scholar
  45. Russo L, DeBarros N, Yang S, Shea K, Mortensen D (2013) Supporting crop pollinators with floral resources: network-based phonological matching. Ecol Evol 3:3125–3140CrossRefPubMedPubMedCentralGoogle Scholar
  46. Senapathi D, Carvalheiro LG, Biesmeijer JC, Dodson C-A, Evans RL, McKerchar M, Morton RD, Moss ED, Roberts SPM, Kunin WE, Potts SG (2015) The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc R Soc B 282:20150294CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stine A, Vaughan M, Adamson N, Gill K, Mader E, Shrader C, Barbour PJ, Henry H (2015) Using 2014 farm bill programs for pollinator conservation, 2nd ed USDA, Biological technical note no 78Google Scholar
  48. Tripodi AD, Szalanski AL (2015) The bumble bees (Hymenoptera: Apidae: Bombus) of Arkansas, 50 years later. J Melittology 50:1–17CrossRefGoogle Scholar
  49. Vaughan M, Hopwood J, Lee-Mader E, Shepherd M, Kremen C, Stine A, Black SH (2015) Farming for bees: guidelines for providing native bee habitat on farms. The Xerces Society for invertebrate conservationGoogle Scholar
  50. Wagner DL, Ascher JS, Bricker NK (2014) A transmission right-of-way as habitat for wild bees (Hymenoptera: Apoidea: Anthphila) in Connecticut. Ann Entomol Soc Am 107:110–1120. doi: 10.1603/AN14001 CrossRefGoogle Scholar
  51. Wang J-P (2011) SPECIES: an R package for species richness estimation. J Stat Softw 40:1–15. URL
  52. Weiner CN, Werner M, Linsenmair KE, Bluthgen N (2014) Land-use impacts on plant–pollinator networks: interaction strength and specialization predict declines. Ecology 95:466–474CrossRefPubMedGoogle Scholar
  53. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  54. Williams PH, Thorp RW, Richardson LL, Colla SR (2014) Bumble bees of North America: an identification guide. Princeton University Press, New JerseyGoogle Scholar
  55. Wright KW, Vanderbilt KL, Inouye DW, Bertelsen CD, Crimmins TM (2015) Turnover and reliability of flower communities in extreme environments: insights from long-term phenology data sets. J Arid Environ 115:27–34CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of New HampshireDurhamUSA

Personalised recommendations