Journal of Insect Conservation

, Volume 20, Issue 2, pp 315–324 | Cite as

Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators

  • A. Lázaro
  • A. Chroni
  • T. Tscheulin
  • J. Devalez
  • C. Matsoukas
  • T. Petanidou
ORIGINAL PAPER

Abstract

The exponential increase of mobile telephony has led to a pronounced increase in electromagnetic fields in the environment that may affect pollinator communities and threaten pollination as a key ecosystem service. Previous studies conducted on model species under laboratory conditions have shown negative effects of electromagnetic radiation (EMR) on reproductive success, development, and navigation of insects. However, the potential effects that widespread mobile telecommunication antennas have on wild pollinator communities outside the laboratory microcosm are still unknown. Here we studied the effects of EMR from telecommunication antennas on key wild pollinator groups (wild bees, hoverflies, bee flies, remaining flies, beetles, butterflies, and wasps). We measured EMR at 4 distances (50, 100, 200 and 400 m) from 10 antennas (5 on Limnos Island and 5 on Lesvos Island, eastern Mediterranean, Greece), and correlated EMR values with insect abundance and richness (the latter only for wild bees and hoverflies). All pollinator groups except butterflies were affected by EMR. In both islands, beetle, wasp, and hoverfly abundance decreased with EMR, whereas the abundance of underground-nesting wild bees and bee flies unexpectedly increased with EMR. The effect of EMR on the abundance of remaining flies differed between islands. With respect to species richness, EMR only tended to have a negative effect on hoverflies in Limnos. As EMR affected the abundance of several insect guilds negatively, and changed the composition of wild pollinators in natural habitats, it might also have additional ecological and economic impacts on the maintenance of wild plant diversity, crop production and human welfare.

Keywords

Bee flies Beetles Butterflies Distance to the antenna Electromagnetic smog EMR Hoverflies Species richness Wasps Wild bees 

Supplementary material

10841_2016_9868_MOESM1_ESM.doc (1 mb)
Supplementary material 1 (DOC 1063 kb)

References

  1. Aguilar R, Ashworth L, Galetto L, Aizen M (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980CrossRefPubMedGoogle Scholar
  2. Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421CrossRefGoogle Scholar
  3. Atli E, Ünlü H (2006) The effects of microwave frequency electromagnetic fields on the development of Drosophila melanogaster. Int J Radiat Biol 82:435–441CrossRefPubMedGoogle Scholar
  4. Atli E, Ünlü H (2007) The effects of microwave frequency electromagnetic fields on the fecundity of Drosophila melanogaster. Turkish J Biol 31:1–5Google Scholar
  5. Balanis C (2005) Antenna theory: analysis and design, 3rd edn. Wiley, New YorkGoogle Scholar
  6. Balmori A (2015) Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci Total Environ 518–519:58–60CrossRefPubMedGoogle Scholar
  7. Barton K (2014) MuMIn: Multi-model inference. R package version 1.10.0. Retrieved May 14, 2014, from http://cran.r-project.org/package=MuMIn
  8. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354CrossRefPubMedGoogle Scholar
  9. Bjørnstad ON, Falck W (2001) Non-parametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8:53–70CrossRefGoogle Scholar
  10. Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence and function. Science 339:1611–1615CrossRefPubMedGoogle Scholar
  11. Cammaerts M-C, Johansson O (2014) Ants can be used as bio-indicators to reveal biological effects of electromagnetic waves from some wireless apparatus. Electromagn Biol Med 33:282–288CrossRefPubMedGoogle Scholar
  12. Cammaerts M-C, De Doncker P, Patris X, Bellens F, Rachidi Z, Cammaerts D (2012) GSM 900 MHz radiation inhibits ants’ association between food sites and encountered cues. Electromagn Biol Med 31:151–165CrossRefPubMedGoogle Scholar
  13. Cammaerts M-C, Vandenbosch GAE, Volski V (2014) Effect of short-term GSM radiation at representative levels in society on a biological model: the ant Myrmica sabuleti. J Insect Behav 27:514–526CrossRefGoogle Scholar
  14. Chavdoula ED, Panagopoulus DJ, Margaritis LH (2010) Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: detection of apoptotic cell-death features. Mutat Res 700:51–61CrossRefPubMedGoogle Scholar
  15. Chittka L, Thomson JD (2001) Cognitive ecology of pollination. Cambridge University Press, CambridgeGoogle Scholar
  16. Cucurachi S, Tamis WLM, Vijver MG, Peijnenburg WJGM, Bolte JFB, de Snoo GR (2013) A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int 51:116–140CrossRefPubMedGoogle Scholar
  17. Dasdag S, Akdag MZ, Aksen F, Bashan M, Buyukbayram H (2004) Does 900 MHZ GSM mobile phone exposure affect rat brain? Electromagn Biol Med 23(3):201–214CrossRefGoogle Scholar
  18. Favre D (2011) Mobile phone-induced honeybee worker piping. Apidologie 42:270–279CrossRefGoogle Scholar
  19. Flüge S (2004) EMR-TS PC Transfer Set Narda Safety Test Solutions GmbH. BN 2244/90.36. Version 1.02 ff. http://www.narda-sts.us/software/Narda_EMR.zip
  20. Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821CrossRefGoogle Scholar
  21. Goldsmith A (2005) Wireless communications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208CrossRefPubMedGoogle Scholar
  23. Harst W, Kuhn J, Stever H (2006) Can electromagnetic exposure cause a change in behaviour? Studying possible non-thermal influences on honeybees—an approach within the framework of educational informatics. Acta Syst IIAS Int J 6(1):1–6Google Scholar
  24. Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant–pollinator interactions? Ecol Lett 12:184–195CrossRefPubMedGoogle Scholar
  25. Kearns C, Inouye D, Waser N (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Annu Rev Ecol Syst 29:83–112CrossRefGoogle Scholar
  26. Kirschvink JL, Walker MM, Diebel C (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11:462–467CrossRefPubMedGoogle Scholar
  27. Klein AM, Vaissière BE, Cane JH, Dewenter IS, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B Biol Sci 274:303–313CrossRefGoogle Scholar
  28. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314CrossRefPubMedGoogle Scholar
  29. Lázaro A, Tscheulin T, Devalez J, Nakas G, Petanidou T (2016) Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecol Entom. doi:10.1111/een.12310 Google Scholar
  30. Lever JJ, van Nes EH, Scheffer M, Bascompte J (2014) The sudden collapse of pollinator communities. Ecol Lett 17:350–359CrossRefPubMedGoogle Scholar
  31. Löscher W, Käs G (1998) Behavioural abnormalities in a dairy cow herd near a TV and radio transmitting antenna. Prakt Tierarzt 79:437Google Scholar
  32. Marks TA, Ratke CC, English WO (1995) Stray voltage and developmental, reproductive and other toxicology problems in dogs, cats and cows—a discussion. Vet Hum Toxicol 37:163–172PubMedGoogle Scholar
  33. Maskey D, Kim M, Aryal B, Pradhan J, Choi I-Y, Park K-S, Son T, Hong S-Y, Kim SB, Kim HG, Kim MJ (2010) Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res 1313:232–241CrossRefPubMedGoogle Scholar
  34. Maskey D, Kim H-J, Kim HG, Kim MJ (2012) Calcium-binding proteins and GFAP immunoreactivity alterations in murine hippocampus after 1 month of exposure to 835 MHz radiofrequency at SAR values of 1.6 and 4.0 W/kg. Neurosci Lett 506:292–296CrossRefPubMedGoogle Scholar
  35. Michener CD (2007) The bees of the world, 2nd edn. John Hopkins University Press, BaltimoreGoogle Scholar
  36. Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314CrossRefPubMedGoogle Scholar
  37. Müller A (2015) Palaearctic osmiine bees. ETH Zürich. http://blogs.ethz.ch/osmiini
  38. Narayanan SN, Kumar RS, Karun KM, Nayak SB, Bhat PG (2015) Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation. Metab Brain Dis 30(5):1193–1206 CrossRefPubMedGoogle Scholar
  39. Nielsen A, Steffan-Dewenter I, Westphal C, Messinger O, Potts SG, Roberts SPM, Settele J, Szentgyorgyi H, Vaissière BE, Vaitis M, Woyciechowski M, Bazos I, Biesmeijer JC, Bommarco R, Kunin WE, Tscheulin T, Lamborn E, Petanidou T (2011) Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol Res 26:969–983CrossRefGoogle Scholar
  40. Panagopoulos DJ, Margaritis LH (2010) The effect of exposure duration on the biological activity of mobile telephony radiation. Mutat Res 699:17–22CrossRefPubMedGoogle Scholar
  41. Panagopoulos DJ, Karabarbounis A, Margaritis LH (2004) Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster. Electromagn Biol Med 23:29–43CrossRefGoogle Scholar
  42. Panagopoulos DJ, Chavdoula ED, Nezis IP, Margaritis LH (2007) Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. Mutat Res 626:69–78CrossRefPubMedGoogle Scholar
  43. Panagopoulos DJ, Chavdoula ED, Margaritis LH (2010) Bioeffects of mobile telephony radiation in relation to its intensity or distance from the antenna. Int J Radiat Biol 86:345–357CrossRefPubMedGoogle Scholar
  44. Pauw A (2007) Collapse of a pollination web in small conservation areas. Ecology 88:1759–1769CrossRefPubMedGoogle Scholar
  45. Petanidou T, Ellis WN (1993) Pollinating fauna of a phryganic ecosystem: composition and diversity. Biodiv Lett 1:9–22CrossRefGoogle Scholar
  46. Petanidou T, Ståhls G, Vujić A, Olesen JM, Rojo S, Thrasyvoulou A, Sgardelis S, Kallimanis AS, Kokkini S, Tscheulin T (2013) Investigating plant–pollinator relationships in the Aegean: the approaches of the project POL-AEGIS (The Pollinators of the Aegean Archipelago: Diversity and Threats). J Apicult Res 52:106–117CrossRefGoogle Scholar
  47. Potts SG, Petanidou T, Roberts S, O’Toole C, Hulbert A, Willmer P (2006) Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape. Biol Conserv 129:519–529CrossRefGoogle Scholar
  48. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  49. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org
  50. Sahib SS (2011) Impact of mobile phones on the density of honeybees. J Public Adm Policy Res 3:131–137Google Scholar
  51. Sahin A, Aslan A, Bas O, Ikinci A, Özyilmaz C, Sönmez OF, Çolakoglu OE (2015) Deleterious impacts of a 900-MHz electromagnetic field on hippocampal pyramidal neurons of 8-week-old Sprague Dawley male rats. Brain Res 1624:232–238CrossRefPubMedGoogle Scholar
  52. Sharma VP, Kumar NR (2010) Changes in honeybee behaviour and biology under the influence of cellphone radiations. Curr Sci 98:1376–1378Google Scholar
  53. Tscheulin T, Spyropoulos A, Petanidou T (2010) Impacts of mobile phone masts on the abundance of pollinators. In: 5th Conference of the Hellenic Ecological Society, Patras, p 201Google Scholar
  54. Vácha, M, Půžová T, Kvíčalová M (2009) Radio-frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212:3473–3477CrossRefPubMedGoogle Scholar
  55. Válková T, Vácha M (2012) How do honeybees use their magnetic compas? Can they see the North? Bull Entomol Res 102:461–467CrossRefPubMedGoogle Scholar
  56. Vijver MG, Bolte JFB, Evans TR, Tamis WLM, Peijnenburg WJGM, Musters CJM, de Snoo GR (2013) Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation. Electromagn Biol Med 33(1):21–28CrossRefPubMedGoogle Scholar
  57. Wajnberg E, Acosta-Avalos D, Alves OC, de Oliviera JF, Srygley RB, Esquivel DM (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7:S207–S225CrossRefPubMedPubMedCentralGoogle Scholar
  58. Warnke U (2009) Bees, birds and mankind: destroying nature by ‘Electrosmog’ effects of wireless communication technologies. A Brochure series by the competence initiative for the protection of humanity, environment and democracy, Kempten, 1st edn, November 2007, ISBN: 978-3-00-023124-7, English edn, March 2009, pp 14–33Google Scholar
  59. Weisbrot D, Lin H, Ye L, Blank M, Goodman R (2003) Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster. J Cell Biochem 89:48–55CrossRefPubMedGoogle Scholar
  60. Westphal C, Bommarco R, Carre G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SPM, Szentgyorgyi H, Tscheulin T, Vaissière BE, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring bee biodiversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671CrossRefGoogle Scholar
  61. Yeates DK, Greathead DJ (1997) The evolutionary pattern of host use in the Bombyliidae (Diptera): a diverse family of parasitoid flies. Biol J Linn Soc 60:149–185CrossRefGoogle Scholar
  62. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  63. Zuur AF, Hilbe JM, Ieno EN (2013) Beginner’s guide to GLM and GLMM with R. Highland Statistics, NewburghGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Lázaro
    • 1
    • 2
  • A. Chroni
    • 1
  • T. Tscheulin
    • 1
  • J. Devalez
    • 1
  • C. Matsoukas
    • 3
  • T. Petanidou
    • 1
  1. 1.Laboratory of Biogeography and Ecology, Department of GeographyUniversity of the AegeanMytileneGreece
  2. 2.Mediterranean Institute for Advanced StudiesEsporlesSpain
  3. 3.Department of EnvironmentUniversity of the AegeanMytileneGreece

Personalised recommendations