Journal of Insect Conservation

, Volume 20, Issue 2, pp 255–264 | Cite as

Adult population ecology and egg laying strategy in the ‘cruciata’ ecotype of the endangered butterfly Maculinea alcon (Lepidoptera: Lycaenidae)

  • Márta Osváth-FerenczEmail author
  • Zsolt CzekesEmail author
  • Gyöngyvér Molnár
  • Bálint Markó
  • Tibor-Csaba Vizauer
  • László Rákosy
  • Piotr Nowicki


Population dynamics studies in insects mostly focus on a specific life stage of a species and seldom consider different stages. Here, we studied the population demography of a protected Maculinea alconcruciata’ population and the factors that could influence the distribution of eggs. The results of the mark-recapture survey showed a relatively short flight period between mid-June and mid-July with a clearly marked early peak period. Unlike in many other butterflies, protandry was not strong. The total population of M. alconcruciata’ was estimated at 699 individuals. The survival rate, and consequently the average life span, was relatively low. Eggs showed a highly aggregated pattern, and egg numbers were positively related to general shoot size, while the number of flower buds and the features of the surrounding vegetation did not display any effect on egg laying. Based on our findings, the studied population appears viable, but specific management techniques could ensure optimal conditions for egg laying in this protected butterfly.


Host plant Mark-recapture Sex ratio Species conservation Survival Vegetation characteristics 



We thank Annamária Fenesi and Krisztina Havadtői for the characterization of the study area’s vegetation, Ádám Kőrösi for his helpful comments on the manuscript, and Paul Kirkland for linguistic corrections which contributed to the improvement of the manuscript considerably. M.O.-F.’s work was supported by the Sectoral Operational Programme for Human Resources Development 2007–2013, co-financed by the European Social Fund, under the Project POSDRU/159/1.5/S/133391: “Doctoral and postdoctoral excellence programs for training highly qualified human resources for research in the fields of Life Sciences, Environment and Earth”. Furthermore the study was funded by the Polish National Science Centre Grant DEC-2013/11/B/NZ8/00912. During preparation of the manuscript Zs.C.’s work was supported by a Grant of the Ministry of National Education (Romania), CNCS-UEFISCDI, Project No. PN-II-ID-PCE-2012-4-0595, while B.M.’s work by the Bolyai János Scholarship of the Hungarian Academy of Sciences.


  1. Alonso C (2003) Choosing a place to grow. Importance of within plant abiotic microenvironment for Yponomeuta mahalebella. Entomol Exp Appl 83:171–180. doi: 10.1046/j.1570-7458.1997.00169.x CrossRefGoogle Scholar
  2. Árnyas E, Bereczki J, Tóth A, Varga Z (2005) Results of the mark-release-recapture studies of a Maculinea rebeli population in the Aggtelek karst (N Hungary) between 2002–2004. In: Settele J, Kühn E, Thomas J (eds) Studies on the ecology and conservation of butterflies in Europe. Vol. 2. Species ecology along a European Gradient: Maculinea butterflies as a model. Pensoft Publishers, Sofia-Moscow, pp 111–114Google Scholar
  3. Bálint ZS (1994) Magyarország nappali lepkéi a természetvédelem tükrében (Lepidoptera, Rophalocera). Somogyi Múzeumok Közleményei 10:183–206Google Scholar
  4. Barton K (2015) MuMIn: Multi-model inference. R package version 1.10.5.
  5. Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. doi: 10.18637/jss.v067.i01
  6. Begon M, Mortimer M, Thompson DJ (1996) Population ecology: a unified study of animals and plants. Blackwell Science, Hoboken. doi: 10.1002/9781444313765.fmatter CrossRefGoogle Scholar
  7. Bereczki J, Pecsenye K, Peregovits L, Varga Z (2005) Pattern of genetic differentiation in the Maculinea alcon species group (Lepidoptera, Lycaenidae) in Central Europe. JZS 43:157–165. doi: 10.1111/j.1439-0469.2005.00305.157-165 Google Scholar
  8. Bergman K-O (2001) Population dynamics and the importance of habitat management for conservation of the butterfly Lopinga achine. J Appl Ecol 38:1303–1313. doi: 10.1046/j.0021-8901.2001.00672.x CrossRefGoogle Scholar
  9. Casacci LP, Barbero F, Balletto E (2014) The “Evolutionary Significant Unit” concept and its applicability in biological conservation. Ital J Zool 81:182–193. doi: 10.1080/11250003.2013.870240 CrossRefGoogle Scholar
  10. Chao A (1988) Estimating animal abundance with capture frequency data. J Wildl Manag 52:295–300. doi: 10.2307/3801237 CrossRefGoogle Scholar
  11. Clark BR, Faeth SH (1998) The evolution of egg clustering in butterflies: a test of the egg desiccation hypothesis. Evol Ecol 12:543–552. doi: 10.1023/A:1006504725592 CrossRefGoogle Scholar
  12. Cormont A, Wieger Wamelinka GW, Jochema R, WallisDeVries MF, Wegmana RMA (2013) Host plant-mediated effects of climate change on the occurrence of the Alcon blue butterfly (Phengaris alcon). Ecol Model 250:329–337. doi: 10.1016/j.ecolmodel.2012.11.022 CrossRefGoogle Scholar
  13. Czekes ZS, Markó B, Nash DR, Ferencz M, Lázár B, Rákosy L (2014) Differences in oviposition strategies between two ecotypes of the endangered myrmecophilous butterfly Maculinea alcon (Lepidoptera: Lycaenidae) under unique syntopic conditions. Insect Conserv Divers 7:122–131. doi: 10.1111/icad.12041 CrossRefGoogle Scholar
  14. Elkinton JS, Liebhold AM (1990) Population dynamics of gypsy moth in North America. Annu Rev Entomol 35:571–596. doi: 10.1146/annurev.en.35.010190.003035 CrossRefGoogle Scholar
  15. Elmes GW, Thomas JA (1987) Die Gattung Maculinea. In: Geiger W (ed) Tagfalter und ihre Lebensraeume: Arten, Gefaehrdung, Schutz. Schweizerische Bund für Naturschutz, Basel, pp 354–368Google Scholar
  16. Elmes GW, Wardlaw JC, Thomas JA (1991) Larvae of Maculinea rebeli, a large blue butterfly, and their Myrmica host ants: patterns of caterpillar growth and survival. J Zool 224:79–92. doi: 10.1111/j.1469-7998.1991.tb04789.x CrossRefGoogle Scholar
  17. Elmes GW, Clarke RT, Thomas JA, Hochberg ME (1996) Empirical tests of specific predictions made from a spatial model of the population dynamics of Maculinea rebeli, a parasitic butterfly of red ant colonies. Acta Oecol 17:61–80Google Scholar
  18. Elmes GW, Thomas JA, Wardlaw JC, Hochberg ME, Clarkel RT, Simcox DJ (1998) The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J Insect Conserv 2:67–78. doi: 10.1023/A:1009696823965 CrossRefGoogle Scholar
  19. Fiedler K (2006) Ant-associates of Palaearctic lycaenid butterfly larvae (Hymenoptera: Formicidae; Lepidoptera: Lycaenidae)—a review. Myrmecol Nachr 9:77–87Google Scholar
  20. Fürst MA, Nash DR (2010) Host ant independent oviposition in the parasitic butterfly Maculinea alcon. Biol Lett 6:174–176. doi: 10.1098/rsbl.2009.0730 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711CrossRefPubMedGoogle Scholar
  22. Hilker M, Fatouros NE (2015) Plant responses to insect egg deposition. Annu Rev Entomol 60:493–515. doi: 10.1146/annurev-ento-010814-020620 CrossRefPubMedGoogle Scholar
  23. Hochberg ME, Thomas JA, Elmes GW (1992) A modelling study of the population dynamics of a large blue butterfly, Maculinea rebeli, a parasite of red ant nests. J Anim Ecol 61:397–409. doi: 10.2307/5331 CrossRefGoogle Scholar
  24. Hochberg ME, Clarke RT, Elmes GW, Thomas JA (1994) Population dynamic consequences of direct and indirect interactions involving a large blue butterfly and its plant and red ant hosts. J Anim Ecol 63:375–391. doi: 10.2307/5555 CrossRefGoogle Scholar
  25. Hunter MD (2001) Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric For Entomol 3:77–84. doi: 10.1046/j.1461-9563.2001.00100.x CrossRefGoogle Scholar
  26. Hurvich CM, Tsai C (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. doi: 10.1093/biomet/76.2.297 CrossRefGoogle Scholar
  27. Karlsson B, Johansson A (2008) Seasonal polyphenism and developmental trade-offs between flight ability and egg laying in a pierid butterfly. Proc R Soc B 275:2131–2136. doi: 10.1098/rspb.2008.0404 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kendall WL, Pollock KH, Brownie C (1995) A likelihood-based approach to capture-recapture estimation of demographic parameter under the robust design. Biometrics 51:293–308CrossRefPubMedGoogle Scholar
  29. Kőrösi Á, Örvössy N, Batáry P, Kövér S, Peregovits L (2008) Restricted within habitat movement and time-constrained egg laying of female Maculinea rebeli butterflies. Oecologia 156:455–464. doi: 10.1007/s00442-008-0986-1 CrossRefPubMedGoogle Scholar
  30. Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103. doi: 10.1038/nature06922 CrossRefPubMedGoogle Scholar
  31. Meyer-Hozak C (2000) Population biology of Maculinea rebeli (Lepidoptera: Lycaenidae) on the chalk grasslands of Eastern Westphalia (Germany) and implications for conservation. J Insect Conserv 4:63–72. doi: 10.1023/A:1009695031802 CrossRefGoogle Scholar
  32. Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M (2005a) Population ecology of the endangered butterflies Maculinea teleius and M. nausithous, and its implications for conservation. Popul Ecol 47:193–202. doi: 10.1007/s10144-005-0222-3 CrossRefGoogle Scholar
  33. Nowicki P, Witek M, Skórka P, Woyciechowski M (2005b) Oviposition patterns in the myrmecophilous butterfly Maculinea alcon Denis & Schiffermüller (Lepidoptera: Lycaenidae) in relation to characteristics of foodplants and presence of ant hosts. Pol J Ecol 53:409–417Google Scholar
  34. Nowicki P, Pepkowska A, Kudlek J, Skórka P, Witek M, Settele J, Woyciechowski M (2007) From metapopulation theory to conservation recommendations: lessons from spatial occurence and abundence patterns of Maculinea butterflies. Biol Conserv 140:119–129. doi: 10.1016/j.biocon.2007.08.001 CrossRefGoogle Scholar
  35. Nowicki P, Settele J, Henry P-Y, Woyciechowski M (2008) Butterfly monitoring methods: the ideal and the real world. Isr J Ecol Evol 54:69–88. doi: 10.1560/IJEE.54.1.69 CrossRefGoogle Scholar
  36. Nowicki P, Bonelli S, Barbero F, Balletto E (2009) Relative importance of density-dependent regulation and environmental stochasticity for butterfly population dynamics. Oecologia 161:227–239. doi: 10.1007/s00442-009-1373-2 CrossRefPubMedGoogle Scholar
  37. Ordano M, Engelhard I, Rempoulakis P, Nemny-Lavy E, Blum M, Yasin S, Lensky IM, Papadopoulos NT (2015) Fruit fly (Bactrocera oleae) population dynamics in the Eastern Mediterranean: influence of exogenous uncertainty on a monophagous frugivorous insect. PLoS ONE 10(5):e0127798. doi: 10.1371/journal.pone.0127798 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Otis DL, Burnham KP, White DC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:1–135Google Scholar
  39. Patricelli D, Barbero F, Occhipinti A, Bertea CM, Bonelli S, Casacci LP, Zebelo SA, Crocoll C, Gershenzon J, Maffei ME, Thomas JA, Balletto E (2015) Plant defences against ants provide a pathway to social parasitism in butterflies. Proc R Soc B 282:20151111. doi: 10.1098/rspb.2015.1111 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pecsenye K, Bereczki J, Tihanyi B, Tóth A, Peregovits L, Varga L (2007) Genetic differentiation among the Maculinea species (Lepidoptera: Lycaenidae) in eastern Central Europe. Biol J Linnean Soc 91:11–21. doi: 10.1111/j.1095-8312.2007.00781.x CrossRefGoogle Scholar
  41. Pfeifer MA, Andrick UR, Frey W, Settele J (2000) On the ecology of a small and isolated population of the Dusky Large Blue Butterfly Glaucopsyche (Maculinea) nausithous (Lycaenidae). Nota Lepid 23:147–172Google Scholar
  42. Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manage 46:752–757. doi: 10.2307/3808568 CrossRefGoogle Scholar
  43. Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical inference for capture recapture experiments. Wildl Monogr 107:1–97Google Scholar
  44. Poulin R (1993) The disparity between observed and uniform distribution: a new look at parasite aggregation. Int J Parasitol 23(7):937–944. doi: 10.1016/0020-7519(93)90060-C CrossRefPubMedGoogle Scholar
  45. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  46. Rákosy L, Vodă R (2008) Distribution of Maculinea genus in Romania. Entomol Rom 13:9–17Google Scholar
  47. Roy DB, Rothery P, Moss D, Pollard E, Thomas JA (2001) Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J Anim Ecol 70:201–217. doi: 10.1111/j.1365-2656.2001.00480.x CrossRefGoogle Scholar
  48. Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86(2):228–232. doi: 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2 CrossRefPubMedGoogle Scholar
  49. Schmitt T, Rákosy L (2007) Changes of traditional agrarian landscapes and their conservation implications: a case study of butterflies in Romania. Divers Distrib 13:855–862. doi: 10.1111/j.1472-4642.2007.00347.x CrossRefGoogle Scholar
  50. Settele J, Kühn E, Thomas J (eds) (2005) Studies on the ecology and conservation of butterflies in Europe. Vol. 2. Species ecology along a European Gradient: Maculinea butterflies as a model. Pensoft Publishers, Sofia-MoscowGoogle Scholar
  51. Sielezniew M, Rutkowski R, Ponikwicka-Tyszko D, Ratkiewicz M, Dziekanska I, Svitra G (2012) Differences in genetic variability between two ecotypes of the endangered myrmecophilous butterfly Phengaris (=Maculinea) alcon—the setting of conservation priorities. Insect Conserv Divers 5:223–236. doi: 10.1111/j.1752-4598.2011.00163.x CrossRefGoogle Scholar
  52. Stamp NE (1980) Egg deposition patterns in butterflies: why do some species cluster their eggs rather than deposit them singly? Am Nat 115:367–380CrossRefGoogle Scholar
  53. Steiner FM, Schlick-Steiner BC, Höttinger H, Nikiforov A, Moder K, Christian E (2006) Maculinea alcon and M. rebeli (Insecta: Lepidoptera: Lycaenidae)—one or two Alcon Blues? Larval cuticular compounds and egg morphology of East Austrian populations. Ann Naturhist Mus Wien 107B:165–180Google Scholar
  54. Steytler SN, Samways MJ (1995) Biotope selection by adult male dragonflies (Odonata) at an artificial lake created for insect conservation in South Africa. Biol Conserv 72:381–386. doi: 10.1016/0006-3207(94)00052-R CrossRefGoogle Scholar
  55. Sunderland K, Samu F (2000) Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Appl 95:1–13. doi: 10.1023/A:1003986225443 CrossRefGoogle Scholar
  56. Thomas JA, Elmes GW (2001) Food-plant niche selection rather than the presence of ant nests explains oviposition patterns in the myrmecophilous butterfly genus Maculinea. Proc R Soc Lond B 268:471–477. doi: 10.1098/rspb.2000.1398 CrossRefGoogle Scholar
  57. Thomas JA, Settele J (2004) Butterfly mimics of ants. Nature 432:283–284. doi: 10.1038/432283a CrossRefPubMedGoogle Scholar
  58. Thomas JA, Clarke RT, Elmes GW, Hochberg ME (1998) Population dynamics in the genus Maculinea (Lepidoptera: Lycaenidae). In: Dempster JP, McLean IFG (eds) Insect population in theory and in practice. Chapman and Hall, London, pp 261–290. doi: 10.1007/978-94-011-4914-3_11
  59. Thomas JA, Simcox DJ, Clarke RT (2009) Successful conservation of a threatened Maculinea butterfly. Science 325:80–83. doi: 10.1126/science.1175726 CrossRefPubMedGoogle Scholar
  60. Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89. doi: 10.1146/annurev.en.36.010191.000433 CrossRefGoogle Scholar
  61. Timuş N, Craioveanu C, Sitaru C, Rus A, Rákosy L (2013) Differences in adult phenology, demography, mobility and distribution in two syntopic ecotypes of Maculinea alcon (cruciata vs. pneumonanthe) (Lepidoptera: Lycaenidae) from Transilvania (Romania). Entomol Rom 18:21–30Google Scholar
  62. Van Dyck H, Regniers S (2010) Egg spreading in the ant-parasitic butterfly, Maculinea alcon: from individual behavior to egg distribution pattern. Anim Behav 80:621–627. doi: 10.1016/j.anbehav.2010.06.021 CrossRefGoogle Scholar
  63. Van Dyck H, Oostermeijer JGB, Talloen W, Feenstra V, Van der Hidde A, Wynhoff I (2000) Does the presence of ant nests matter for oviposition to a specialized myrmecophilous Maculinea butterfly? Proc R Soc Lond B 267:861–866. doi: 10.1098/rspb.2000.1082 CrossRefGoogle Scholar
  64. Van Swaay C, Warren M (1999) Red data book of European butterflies (Rhopalocera). Nature and Environment 99, Council of Europe Publishing, StrasbourgGoogle Scholar
  65. Van Swaay C, Cuttelod A, Collins S, Maes D, Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg. doi: 10.2779/83897 Google Scholar
  66. WallisDeVries MF, Raemakers I (2001) Does extensive grazing benefit butterflies in coastal dunes? Restor Ecol 9:179–188. doi: 10.1046/j.1526-100x.2001.009002179.x CrossRefGoogle Scholar
  67. Way MJ, Heong KL (1994) The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice—a review. Bull Entomol Res 84:567–587. doi: 10.1017/S000748530003282X CrossRefGoogle Scholar
  68. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–138. doi: 10.1080/00063659909477239 CrossRefGoogle Scholar
  69. Witek M, Barbero F, Markó B (2014) Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc 61:307–323. doi: 10.1007/s00040-014-0362-6 CrossRefGoogle Scholar
  70. Wynhoff I, Bakker RB, Oteman B, Arnaldo PS, Van Langevelde F (2015) Phengaris (Maculinea) alcon butterflies deposit their eggs on tall plants with many large buds in the vicinity of Myrmica ants. Insect Conserv Divers 8:177–188. doi: 10.1111/icad.12100 CrossRefGoogle Scholar
  71. Yamamura K, Yokozawa M, Nishimori M, Ueda Y, Yokosuka T (2006) How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Popul Ecol 48:31–48. doi: 10.1007/s10144-005-0239-7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Márta Osváth-Ferencz
    • 1
    Email author
  • Zsolt Czekes
    • 1
    Email author
  • Gyöngyvér Molnár
    • 1
  • Bálint Markó
    • 1
    • 2
  • Tibor-Csaba Vizauer
    • 3
  • László Rákosy
    • 4
  • Piotr Nowicki
    • 5
  1. 1.Hungarian Department of Biology and EcologyBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of EcologyUniversity of SzegedSzegedHungary
  3. 3.Romanian Lepideptorological SocietyCluj-NapocaRomania
  4. 4.Department of Taxonomy and EcologyBabeş-Bolyai UniversityCluj-NapocaRomania
  5. 5.Institute of Environmental SciencesJagiellonian UniversityKrakówPoland

Personalised recommendations