Skip to main content

Advertisement

Log in

The role of various meadow margin types in shaping carabid and staphylinid beetle assemblages (Coleoptera: Carabidae, Staphylinidae) in meadow dominated landscapes

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Less intensively managed semi-natural habitats, e.g., field and meadow margins like hedgerows, are thought to be crucial landscape components for maintaining biodiversity in highly disturbed and intensively managed agricultural landscapes. In this study, we focused on the effects of three meadow margin types on activity-density, species richness and species composition of carabid and staphylinid beetles recorded by pitfall traps in Central European landscapes dominated by intensively managed meadows. Carabid activity-density was significantly higher in meadows than in meadow margins and within meadow margins their activity-density increased from grassy meadow margins via shrubby ones to woody meadow margins. We found that recorded species richness of both carabid and staphylinid beetles was not significantly affected by habitat identity (meadow margin or neighbouring meadow) and meadow margin type. Recorded species composition of both investigated taxa was significantly affected by habitat identity and interaction between habitat identity and meadow margin type (i.e. it differed between particular meadow margin types). Assemblages inhabiting various meadow margin types were more dissimilar between each other than assemblages from neighbouring meadows. Meadow margins within grassland dominated landscapes maintain local species richness by hosting different species from those living in surrounding meadows. Dissimilarity of carabid and staphylinid assemblages from meadows neighbouring both sides of particular meadow margin did not differ between meadow margin types. Our results indicate that semi-natural habitats play an important role in maintaining biodiversity not only in agricultural landscapes dominated by arable fields, but also in those dominated by meadows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen A (1997) Densities of overwintering carabids and staphylinids (Col., Carabidae and Staphylinidae) in cereal and grass fields and their boundaries. J Appl Entomol 121:77–80. doi:10.1111/j.1439-0418.1997.tb01374.x

    Article  Google Scholar 

  • Avgin SS, Luff ML (2010) Ground beetles (Coleoptera: Carabidae) as bioindicators of human impact. Munis Entomol Zool J 9:209–215

    Google Scholar 

  • Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agric Ecosyst Environ 108:205–217. doi:10.1016/j.agee.2005.02.004

  • Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manage 60:7–22. doi:10.1006/jema.2000.0358

    Article  Google Scholar 

  • Beier P (1995) Dispersal of juvenile cougars in fragmented habitat. J Wildl Manag 59:228–237. doi:10.2307/3808935

    Article  Google Scholar 

  • Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252. doi:10.1046/j.1523-1739.1998.98036.x

    Article  Google Scholar 

  • Benes J (1996) The synantropic landscape history of the Šumava Mountains (Czech side). Silva Gabreta 1:237–241

    Google Scholar 

  • Bennet AF (2003) Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN et Cambridge, Gland

    Book  Google Scholar 

  • Bohac J (1999) Staphylinid beetles as bioindicators. Agric Ecosyst Environ 74:357–372. doi:10.1016/S0167-8809(99)00043-2

    Article  Google Scholar 

  • Bohac J, Fuchs R (1991) The structure of animal communities as bioindicators of landscape deteriorisation. In: Jeffrey D, Madden B (eds) Bioindicators and environmental management. Academic Press, San Diego, pp 165–178

    Google Scholar 

  • Bohac J, Matejicek J, Rous R (2007) Check-list of staphylinid beetles (Coleoptera, Staphylinidae) of the Czech Republic nad the division of species according to their ecological characteristic and sensitivity to human influence. Čas Slez Muz Opava 56:227–276

    Google Scholar 

  • Bowie MH, Klimaszewski J, Vink CJ et al (2014) Effect of boundary type and season on predatory arthropods associated with field margins on New Zealand farmland. N Z J Zool 41:268–284. doi:10.1080/03014223.2014.953552

    Article  Google Scholar 

  • Buddle CM, Higgins S, Rypstra AL (2004) Ground-dwelling spider assemblages inhabiting riparian forests and hedgerows in an agricultural landscape. Am Midl Nat 151:15–26. doi:10.1674/0003-0031(2004)151[0015:GSAIRF]2.0.CO;2

    Article  Google Scholar 

  • Burel F (1992) Effect of landscape structure and dynamics on species diversity in hedgerow networks. Landsc Ecol 6:161–174. doi:10.1007/BF00130028

    Article  Google Scholar 

  • Burel F, Butet A, Delettre YR, de la Pena NM (2004) Differential response of selected taxa to landscape context and agricultural intensification. Landsc Urban Plan 67:195–204. doi:10.1016/S0169-2046(03)00039-2

    Article  Google Scholar 

  • Cameron R, Down K, Pannett D (1980) Historical and environmental-influences on hedgerow snail faunas. Biol J Linn Soc 13:75–87. doi:10.1111/j.1095-8312.1980.tb00071.x

    Article  Google Scholar 

  • Charrier S, Petit S, Burel F (1997) Movements of Abax parallelepipedus (Coleoptera, Carabidae) in woody habitats of a hedgerow network landscape: a radio-tracing study. Agric Ecosyst Environ 61:133–144. doi:10.1016/S0167-8809(96)01101-2

    Article  Google Scholar 

  • Cizek O, Zamecnik J, Tropek R et al (2012) Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J Insect Conserv 16:215–226. doi:10.1007/s10841-011-9407-6

    Article  Google Scholar 

  • Da Silva PM, Aguiar CAS, Niemela J et al (2009) Cork-oak woodlands as key-habitats for biodiversity conservation in Mediterranean landscapes: a case study using rove and ground beetles (Coleoptera: Staphylinidae, Carabidae). Biodivers Conserv 18:605–619. doi:10.1007/s10531-008-9527-9

    Article  Google Scholar 

  • Davies ZG, Pullin AS (2007) Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landsc Ecol 22:333–351. doi:10.1007/s10980-006-9064-4

    Article  Google Scholar 

  • De la Pena NM, Butet A, Delettre Y et al (2003) Landscape context and carabid beetles (Coleoptera: Carabidae) communities of hedgerows in western France. Agric Ecosyst Environ 94:59–72. doi:10.1016/S0167-8809(02)00012-9

    Article  Google Scholar 

  • Dennis P, Thomas M, Sotherton N (1994) Structural features of field boundaries which influence the overwintering densities of beneficial arthropod predators. J Appl Ecol 31:361–370. doi:10.2307/2404550

    Article  Google Scholar 

  • Dover J (1990) Butterflies and wildlife corridors. Game Conserv Rev 1989(21):62–64

    Google Scholar 

  • Dover J, Sparks T, Clarke S et al (2000) Linear features and butterflies: the importance of green lanes. Agric Ecosyst Environ 80:227–242. doi:10.1016/S0167-8809(00)00149-3

    Article  Google Scholar 

  • Duflot R, Aviron S, Ernoult A et al (2015) Reconsidering the role of “semi-natural habitat” in agricultural landscape biodiversity: a case study. Ecol Res 30:75–83. doi:10.1007/s11284-014-1211-9

    Article  Google Scholar 

  • Dunning J, Danielson B, Pulliam H (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175. doi:10.2307/3544901

    Article  Google Scholar 

  • Eggers B, Matern A, Drees C et al (2010) Value of semi-open corridors for simultaneously connecting open and wooded habitats: a case study with ground beetles. Conserv Biol 24:256–266. doi:10.1111/j.1523-1739.2009.01295.x

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Ficetola GF, De Bernardi F (2004) Amphibians in a human-dominated landscape: the community structure is related to habitat features and isolation. Biol Conserv 119:219–230. doi:10.1016/j.biocon.2003.11.004

    Article  Google Scholar 

  • Frampton G, Cilgi T, Fry G, Wratten S (1995) Effects of grassy banks on the dispersal of some carabid beetles (coleoptera, Carabidae) on farmland. Biol Conserv 71:347–355. doi:10.1016/0006-3207(94)00072-X

    Article  Google Scholar 

  • Gilbert-Norton L, Wilson R, Stevens JR, Beard KH (2010) A meta-analytic review of corridor effectiveness. Conserv Biol 24:660–668. doi:10.1111/j.1523-1739.2010.01450.x

    Article  PubMed  Google Scholar 

  • Green R, Osborne P, Sears E (1994) The distribution of passerine birds in hedgerows during the breeding-season in relation to characteristics of the hedgerow and adjacent farmland. J Appl Ecol 31:677–692. doi:10.2307/2404158

    Article  Google Scholar 

  • Griffiths GJK, Winder L, Holland JM et al (2007) The representation and functional composition of carabid and staphylinid beetles in different field boundary types at a farm-scale. Biol Conserv 135:145–152. doi:10.1016/j.biocon.2006.09.016

    Article  Google Scholar 

  • Haddad NM, Bowne DR, Cunningham A et al (2003) Corridor use by diverse taxa. Ecology 84:609–615. doi:10.1890/0012-9658(2003)084[0609:CUBDT]2.0.CO;2

    Article  Google Scholar 

  • Hancock MH, Legg CJ (2012) Pitfall trapping bias and arthropod body mass. Insect Conserv Divers 5:312–318. doi:10.1111/j.1752-4598.2011.00162.x

    Article  Google Scholar 

  • Hassan Al D, Georgelin E, Delattre T et al (2013) Does the presence of grassy strips and landscape grain affect the spatial distribution of aphids and their carabid predators? Agric For Entomol 15:24–33. doi:10.1111/j.1461-9563.2012.00587.x

    Article  Google Scholar 

  • Hinsley S, Bellamy P, Newton I, Sparks T (1995) Habitat and landscape factors influencing the presence of individual breeding bird species in woodland fragments. J Avian Biol 26:94–104. doi:10.2307/3677057

    Article  Google Scholar 

  • Hofmann TA, Mason CF (2006) Importance of management on the distribution and abundance of Staphylinidae (Insecta: Coleoptera) on coastal grazing marshes. Agric Ecosyst Environ 114:397–406. doi:10.1016/j.agee.2005.12.001

    Article  Google Scholar 

  • Honek A, Martinkova Z, Saska P, Pekar S (2007) Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic Appl Ecol 8:343–353. doi:10.1016/j.baae.2006.07.002

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, et al (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

  • Hurka K (1996) Carabidae of the Czech and Slovak Republics. Kabourek, Zlín

    Google Scholar 

  • Joyce KA, Holland JM, Doncaster CP (1999) Influences of hedgerow intersections and gaps on the movement of carabid beetles. Bull Entomol Res 89:523–531

    Article  Google Scholar 

  • Knapp M, Rezac M (2015) Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape. PLoS ONE 10:e0123052. doi:10.1371/journal.pone.0123052

    Article  PubMed Central  PubMed  Google Scholar 

  • Knapp M, Ruzicka J (2012) The effect of pitfall trap construction and preservative on catch size, species richness and species composition of ground beetles (Coleoptera: Carabidae). Eur J Entomol 109:419–426

    Article  Google Scholar 

  • Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228. doi:10.1016/S0167-8809(99)00037-7

    Article  Google Scholar 

  • Kubes J (1996) Biocentres and corridors in a cultural landscape. A critical assessment of the “territorial system of ecological stability”. Landsc Urban Plan 35:231–240. doi:10.1016/S0169-2046(96)00321-0

    Article  Google Scholar 

  • Lacasella F, Gratton C, De Felici S et al (2015) Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest-grassland ecotone. Biodivers Conserv 24:447–465. doi:10.1007/s10531-014-0825-0

    Article  Google Scholar 

  • Lipsky Z (2000) Historical development of Czech rural landscape: implications for present landscape planning. In: Richling A, Lechnio J, Malinowska E (eds) Landscape ecology: theory and applications for practical purposes. The problems of landscape ecology. Pultusk School of Humanities, Warsaw, pp 149–159

    Google Scholar 

  • Lohse GA (1964) Staphylinidae I (Micropeplinae bis Tachyporina). In: Freude H, Harde KW, Lohse (eds) Die Käfer Mitteleuropas. Goecke & Evers Verlag, Krefeld

  • Lohse GA, Benick G, Likovsky Z (1974) Staphylinidae II (Hypocyphtinae bis Aleocharinae). In: Freude H, Harde KW, Lohse (eds) Die Käfer Mitteleuropas. Goecke & Evers Verlag, Krefeld

  • Marchi C, Andersen LW, Loeschcke V (2013) Effects of land management strategies on the dispersal pattern of a beneficial arthropod. PLoS ONE 8:e66208. doi:10.1371/journal.pone.0066208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maudsley M, Seeley B, Lewis O (2002) Spatial distribution patterns of predatory arthropods within an English hedgerow in early winter in relation to habitat variables. Agric Ecosyst Environ 89:77–89. doi:10.1016/S0167-8809(01)00320-6

    Article  Google Scholar 

  • Mauremooto J, Wratten S, Worner S, Fry G (1995) Permeability of hedgerows to predatory carabid beetles. Agric Ecosyst Environ 52:141–148. doi:10.1016/0167-8809(94)00548-S

    Article  Google Scholar 

  • Ministry of the Environment, Czech Republic (2015) The operational programme environment 2014–2020 programming document

  • Molina GAR, Poggio SL, Ghersa CM (2014) Epigeal arthropod communities in intensively farmed landscapes: effects of land use mosaics, neighbourhood heterogeneity, and field position. Agric Ecosyst Environ 192:135–143. doi:10.1016/j.agee.2014.04.013

    Article  Google Scholar 

  • Morandin LA, Kremen C (2013) Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol Appl 23:829–839

    Article  PubMed  Google Scholar 

  • Pereira M, Rodriguez A (2010) Conservation value of linear woody remnants for two forest carnivores in a Mediterranean agricultural landscape. J Appl Ecol 47:611–620. doi:10.1111/j.1365-2664.2010.01804.x

    Article  Google Scholar 

  • Petit S, Burel F (1993) Movement of Abax ater Col. Carabidae: Do forest species survive in hedgerow networks? Vie Milieu 423:119–124

    Google Scholar 

  • Pywell RF, James KL, Herbert I et al (2005) Determinants of overwintering habitat quality for beetles and spiders on arable farmland. Biol Conserv 123:79–90. doi:10.1016/j.biocon.2004.10.010

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rainio J, Niemela J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12:487–506. doi:10.1023/A:1022412617568

    Article  Google Scholar 

  • Saska P, van der Werf W, Hemerik L et al (2013) Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction. J Appl Ecol 50:181–189. doi:10.1111/1365-2664.12023

    Article  PubMed Central  PubMed  Google Scholar 

  • Schweiger O, Maelfait JP, Van Wingerden W et al (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42:1129–1139. doi:10.1111/j.1365-2664.2005.01085.x

    Article  Google Scholar 

  • Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79:2057–2070. doi:10.1890/0012-9658(1998)079[2057:ETOEOP]2.0.CO;2

    Article  Google Scholar 

  • Sklenicka P (2002) Temporal changes in pattern of one agricultural Bohemian landscape during the period 1938–1998. Ekol-Bratisl 21:181–191

    Google Scholar 

  • Smilauer P, Leps J (2014) Multivariate analysis of ecological data using Canoco, 2nd edn, vol 5. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sustek Z (1994) Windbreaks as migration corridors for carabids in an agricultural landscape. In: Desender K, Dufrene M, Loreau M et al (eds) Carabid beetles: ecology and evolution. Kluwer Academic Publ, Dordrecht, pp 377–382

    Chapter  Google Scholar 

  • Tew TE, Todd IA, Macdonald DW (2000) Arable habitat use by wood mice (Apodemus sylvaticus) 2. Microhabitat. J Zool 250:305–311. doi:10.1111/j.1469-7998.2000.tb00774.x

    Article  Google Scholar 

  • Thomas CFG, Parkinson L, Griffiths GJK et al (2001) Aggregation and temporal stability of carabid beetle distributions in field and hedgerow habitats. J Appl Ecol 38:100–116

    Article  Google Scholar 

  • Varchola JM, Dunn JP (2001) Influence of hedgerow and grassy field borders on ground beetle (Coleoptera: Carabidae) activity in fields of corn. Agric Ecosyst Environ 83:153–163. doi:10.1016/S0167-8809(00)00249-8

    Article  Google Scholar 

  • Wamser S, Dauber J, Birkhofer K, Wolters V (2011) Delayed colonisation of arable fields by spring breeding ground beetles (Coleoptera: Carabidae) in landscapes with a high availability of hibernation sites. Agric Ecosyst Environ 144:235–240. doi:10.1016/j.agee.2011.08.019

    Article  Google Scholar 

  • Weibull AC, Ostman O, Granqvist A (2003) Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers Conserv 12:1335–1355. doi:10.1023/A:1023617117780

    Article  Google Scholar 

  • Woodcock BA (2005) Pitfall Trapping in Ecological Studies. In: Leather SR (ed) Insect sampling in forest ecosystems. Blackwell Science Ltd, Hoboken, pp 37–57

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of the University of South Bohemia in České Budějovice, Czech Republic (GAJU 063/2013/Z) and the Internal Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences Prague no. 42900/1312/3166. We are grateful to Oldřich Jahn for his assistance in the field and to Jana Knappová for help with performance of multivariate statistical analyses. The clarity of the text was substantially enhanced due to constructive suggestions from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Jahnová.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahnová, Z., Knapp, M., Boháč, J. et al. The role of various meadow margin types in shaping carabid and staphylinid beetle assemblages (Coleoptera: Carabidae, Staphylinidae) in meadow dominated landscapes. J Insect Conserv 20, 59–69 (2016). https://doi.org/10.1007/s10841-015-9839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9839-5

Keywords

Navigation