Skip to main content

Modeling the potential distribution and conservation status of three species of oak gall wasps (Hymenoptera: Cynipidae) in the Iberian range

Abstract

Cynipids (Hymenoptera: Cynipidae) induce a wide variety of complex galls on plants of different botanical families, particularly on Quercus species. Cynipid galls are well known to host large communities of insects, providing fundamental ecological niches for different animal taxa, which are organized in structured and relatively isolated communities at the microhabitat level. Gall communities of Quercus woodlands could be a conservation concern considering some risks, which affect several species of the Parasitica group of Hymenoptera, within which gall wasps and their parasitoids and inquilines are included. These risks concerning Parasitica species are mainly due to three causes: their high trophic level, high host specialization and the lack of knowledge of their biology. In this paper, a preliminary approach to this issue is presented for the Iberian–Balearic range. We model and study the ecological niche of three cynipid gall species that induce galls on Quercus species (Andricus quercustozae, Biorhiza pallida and Plagiotrochus quercusilicis). The cynipid gall species were selected for their different sets of host species and life cycle. The Ecological Niche Factor Analysis and two niche models built for each species (MAXENT and Mahalanobis Distances) support the interpretation that the bioclimatic variables considered have effects on cynipids through their respective sets of host plants. In addition, the results regarding A. quercustozae are consistent with the hypothetical existence of cryptic sexual generation (exposed in other works) parasitizing cork oak (Quercus suber), which could have another key role in its conservation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agência Portuguesa do Ambiente (1978) Atlas do Ambiente. Digital version. http://sniamb.apambiente.pt/webatlas/index.html

  2. Aguilera Benavente F, Botequilha-Leitão A (2012) Selección de métricas de paisaje mediante análisis de componentes principales para la descripción de los cambios de uso y cobertura del suelo del Algarve, Portugal. GeoFocus 12:93–121

    Google Scholar 

  3. Ales R, Martin A, Ortega F, Ales E (1992) Recent changes in landscape structure and function in a mediterranean region of SW Spain (1950–1984). Landscape Ecol 7:3–18

    Article  Google Scholar 

  4. Amaral Franco J (1991) Quercus L. In: Castroviejo S, Laínz M, López Gonzáles G, Montserrat P, Muñoz Garmendia F, Paiva J, Villar L (eds) Flora Iberica: plantas vasculares de la Peninsula Ibérica e Islas Baleares, vol 2: Platanaceae—Plumbaginaceae (partim). Real Jardín Botánico, CSIC, pp 15–36

  5. Anderson RP, Gonzalez I Jr (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Article  Google Scholar 

  6. Aragón P, Baselga A, Lobo JM (2010) Global estimation of invasion risk zones for the western corn rootworm Diabrotica virgifera virgifera: integrating distribution models and physiological thresholds to assess climatic favourability. J Appl Ecol 47:1026–1035

    Article  Google Scholar 

  7. Askew RR (1961) On the biology of the inhabitants of oak galls of Cynipidae (Hymenoptera) in Britain. Trans Soc Br Entomol 14:237–268

    Google Scholar 

  8. Askew RR, Gómez Sánchez JF, Hernández Nieves M, Nieves-Aldrey JL (2006) Catalogue of parasitoids and inquilines in galls of Aylacini, Diplolepidini and Pediaspidini (Hym., Cynipidae) in the West Palaearctic. Zootaxa 1301:1–60

    Google Scholar 

  9. Askew RR, Melika G, Pujade-Villar J, Schoenrogge K, Stone GN, Nieves-Aldrey JL (2013) Catalogue of parasitoids and inquilines in cynipid oak galls in the West Palaearctic. Zootaxa 3643:001–133

    Article  Google Scholar 

  10. Atkinson R, Rokas A, Stone G (2007) Longitudinal patterns in species richness and genetic diversity in European oaks and oak gallwasps. In: Weiss S, Ferrand N (eds) Phylogeography of Southern European Refugia. Springer, Netherlands, pp 127–151

    Chapter  Google Scholar 

  11. Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:251–270

    Article  Google Scholar 

  12. Bellido D, Pujade-Villar J (1999) Aproximació al coneixement de la biogeografia de la tribu Cynipini (Hymenoptera: Cynipoidea: Cynipidae) a la regió Paleàrtica. Sessió d’Entomologia de la Institució Catalana d’Història Natural-Societat Catalana de Lepidopterologia 11:67–79

    Google Scholar 

  13. Bellido D, Ros-Farré P, Pujade-Villar J (2001) Collecció Vilarrúbia I: galles dipositades al Museu de Zoología de Barcelona. Sessió Conjunta d’Entomologia 12:109–138

    Google Scholar 

  14. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178

    Article  Google Scholar 

  15. Blanco E, Casado MA, Costa M, Escribano R, García M, Génova M, Gómez A, Gómez F, Moreno JC, Morla C, Regato P, Sainz H (1997) Los bosques ibéricos. Una interpretación geobotánica, Planeta, Barcelona

    Google Scholar 

  16. Bosso L, Rebelo H, Garonna AP, Russo D (2013) Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J Nat Conserv 21:72–80

    Article  Google Scholar 

  17. Bustamante J (1997) Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Biol Conserv 80:153–160

    Article  Google Scholar 

  18. Carlos-Júnior LA, Barbosa NPU, Moulton TP, Creed JC (2015) Ecological Niche Model used to examine the distribution of an invasive, non-indigenous coral. Mar Environ Res 103:115–124

    PubMed  Article  CAS  Google Scholar 

  19. Cianfrani C, Le Lay G, Hirzel AH, Loy A (2010) Do habitat suitability models reliably predict the recovery areas of threatened species? J Appl Ecol 47:421–430

    Article  Google Scholar 

  20. Cook JM, Rokas A, Pagel M, Stone GN (2002) Evolutionary shifts between host oak sections and host-plant organs in Andricus gallwasps. Evolution 56:1821–1830

    PubMed  Article  Google Scholar 

  21. Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature 329:326–327

    Article  Google Scholar 

  22. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  23. De Clercq EM, Leta S, Estrada-Peña A, Madder M, Adehan S, Vanwambeke SO (2015) Species distribution modelling for Rhipicephalus microplus (Acari: Ixodidae) in Benin, West Africa: comparing datasets and modelling algorithms. Prev Vet Med 118:8–21

    PubMed  Article  Google Scholar 

  24. Denoël M, Ficetola GF (2015) Using kernels and ecological niche modelling to delineate conservation areas in an endangered patch-breeding phenotype. Ecol Appl 25(7):1922–1931

  25. Díaz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity of land use and wildlife. In: Pain D, Pienkowski M (eds) Farming and birds in Europe: The common agricultural policy and its implications for bird conservation.  Academic Press, London, pp 178–209

    Google Scholar 

  26. Dormann CF et al. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  27. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677

    Article  Google Scholar 

  28. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  29. EUROPARC-España (2008) Anuario EUROPARC-España del estado de los espacios naturales protegidos 2007. Fundación Fernando González Bernáldez, Madrid

    Google Scholar 

  30. Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Model 160:115–130

    CAS  Article  Google Scholar 

  31. Felicísimo AM, Muñóz J, Mateo RG, Villalba CJ (2012) Vulnerabilidad de la flora y vegetación españolas ante el cambio climático. Ecosistemas 21:1–6

    Google Scholar 

  32. Fenoglio MS, Srivastava D, Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology 93:2407–2420

    PubMed  Article  Google Scholar 

  33. Fernández-Marín B, and Camarero JJ (2009) Evaluación de la capacidad de adaptación al estrés climático en Quercus mediterráneos: ¿ plasticidad fenotípica o variación genotípica? 5º Congreso Forestal Español

  34. Fiaboe KKM, Peterson AT, Kairo MTK, Roda AL (2012) Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Fla Entomol 95:659–673

    Article  Google Scholar 

  35. GBIF data portal (2013) Search in Andorra, Spain and Portugal of: Quercus canariensis, Q. coccifera, Q. faginea, Q. ilex, Q. lusitanica, Q. petraea, Q. pubescens, Q. pyrenaica, Q. robur, Q. suber. Accesed 15 May 2013. http://www.GBIF.net

  36. Gil GE, Lobo JM (2012) Situación del zorro vinagre (Speothos venaticus) en el extremo sur de su distribución (Argentina). Interciencia 37:21–28

    Google Scholar 

  37. Guerra Velasco JC (2001) La acción humana, el paisaje vegetal y el estudio biogeográfico. Boletín de la AGE 31:47–60

    Google Scholar 

  38. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  39. Harper LJ, Schönrogge K, Lim KY, Francis P, Lichtenstein CP (2004) Cynipid galls: insect-induced modifications of plant development create novel plant organs. Plant Cell Environ 27:327–335

    CAS  Article  Google Scholar 

  40. Hassall C (2012) Predicting the distributions of under-recorded Odonata using species distribution models. Insect Conserv Diver 5:192–201

    Article  Google Scholar 

  41. Hayward A, Stone GN (2005) Oak gall wasp communities: evolution and ecology. Basic Appl Ecol 6:435–443

    Article  Google Scholar 

  42. Hernández L, Romero F (2009) Bosques españoles. Los bosques que nos quedan y propuestas de WWF para su restauración. WWF España, Madrid, Spain

  43. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  44. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  45. Hirzel AH, Hausser J, Perrin N (2007) Biomapper 4.0. Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Switzerland. http://www2.unil.ch/biomapper/

  46. Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736

    PubMed  Article  Google Scholar 

  47. Hortal J, Lobo JM, JimÉNez-Valverde A (2007) Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conserv Biol 21:853–863

    PubMed  Article  Google Scholar 

  48. Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858

    Article  Google Scholar 

  49. Jiménez P, Díaz-Fernández P, Martín S, Gil L (1998) Regiones de procedencia de Quercus pyrenaica Willd., Quercus faginea Lam. y Quercus canariensis Willd. Organismo Autónomo Parques Nacionales, Madrid, Spain

  50. Jiménez-Valverde A (2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecol Biogeogr 21:498–507

    Article  Google Scholar 

  51. Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A, Hortal J (2008a) Challenging species distribution models: the case of Maculinea nausithous in the Iberian Peninsula. Ann Zool Fenn 45:200–210

    Article  Google Scholar 

  52. Jiménez-Valverde A, Lobo JM, Hortal J (2008b) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  53. Jiménez-Valverde A, Lira-Noriega A, Peterson AT, Soberón J (2010) Marshalling existing biodiversity data to evaluate biodiversity status and trends in planning exercises. Ecol Res 25:947–957

    Article  Google Scholar 

  54. Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  55. Joseph M, Gentles M, Pearse I (2011) The parasitoid community of Andricus quercuscalifornicus and its association with gall size, phenology, and location. Biodivers Conserv 20:203–216

    Article  Google Scholar 

  56. Kaartinen R, Roslin T (2011) Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J Anim Ecol 80:622–631

    PubMed  Article  Google Scholar 

  57. Kaartinen R, Roslin T (2012) High temporal consistency in quantitative food web structure in the face of extreme species turnover. Oikos 121:1771–1782

    Article  Google Scholar 

  58. Kadmon R, Farber O, Danin A (2003) A systematic analysis of factors affecting the performance of climatic envelope models. Ecol Appl 13:853–867

    Article  Google Scholar 

  59. Kadmon R, Farber O, Danin A (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413

    Article  Google Scholar 

  60. Kanagaraj R, Wiegand T, Kramer-Schadt S, Anwar M, Goyal SP (2011) Assessing habitat suitability for tiger in the fragmented Terai Arc Landscape of India and Nepal. Ecography 34:970–981

    Article  Google Scholar 

  61. Klapwijk MJ, Lewis OT (2012) Host–parasitoid dynamics in a fragmented landscape: Holly trees, holly leaf miners and their parasitoids. Basic Appl Ecol 13:94–105

    Article  Google Scholar 

  62. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, Macdonald DW, Mathai J, Eaton J, Marshall AJ, Semiadi G, Rustam R, Bernard H, Alfred R, Samejima H, Duckworth JW, Breitenmoser-Wuersten C, Belant JL, Hofer H, Wilting A (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Article  Google Scholar 

  63. Krewenka KM, Holzschuh A, Tscharntke T, Dormann CF (2011) Landscape elements as potential barriers and corridors for bees, wasps and parasitoids. Biol Conserv 144:1816–1825

    Article  Google Scholar 

  64. Lee JC, Heimpel GE (2008) Floral resources impact longevity and oviposition rate of a parasitoid in the field. J Anim Ecol 77:565–572

    PubMed  Article  Google Scholar 

  65. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  66. Lobo JM, Guéorguiev BV, Chehlarov EI (2010) The species of Scarabaeus Linnaeus (Coleoptera: Scarabaeidae) in Bulgaria and adjacent regions: faunal review and potential distribution. Entomol Fenn 21:202–220

    Google Scholar 

  67. Marañón T (1999) El bosque mediterráneo. In: Jurado V (ed) Naturaleza en Andalucía, vol 7., El medio forestalEdiciones Giralda, Sevilla, pp 16–50

    Google Scholar 

  68. Marini M, Barbet-Massin M, Lopes L, Jiguet F (2013) Geographic and seasonal distribution of the Cock-tailed Tyrant (Alectrurus tricolor) inferred from niche modeling. J Ornithol 154:393–402

    Article  Google Scholar 

  69. Mateo RG, Felicísimo ÁM, Muñoz J (2011) Modelos de distribución de especies: Una revisión sintética. Rev Chil His Nat 84:217–240

    Article  Google Scholar 

  70. Ministerio de Fomento (2010) Metodología de producción de la base de datos CLC-change 2000–2006. Madrid, Spain

  71. Nieves-Aldrey JL (2001a) Familia Cynipidae. Hymenoptera, Cynipidae. In: Ramos MA et al (eds) Fauna Ibérica. Museo Nacional de Ciencias Naturales, vol 16. CSIC, Madrid

    Google Scholar 

  72. Nieves-Aldrey JL (2001b) Nuevos datos faunísticos, corológicos y biológicos sobre los cinípidos del ámbito íbero-balear (Hymenoptera, Cynipidae). Graellsia 57:39–72

    Article  Google Scholar 

  73. Nieves-Aldrey JL (2008a) Aulacidea martae Nieves-Aldrey 2004. In: Barea-Azcón JM, Ballesteros-Duperón E, Moreno D (eds) Libro Rojo de los Invertebrados de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, pp 1157–1160

    Google Scholar 

  74. Nieves-Aldrey JL (2008b) Trigonaspis baetica Nieves-Aldrey. In: Barea-Azcón JM, Ballesteros-Duperón E, Moreno D (eds) Libro Rojo de los Invertebrados de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, pp 1161–1165

    Google Scholar 

  75. Nieves-Aldrey JL, Gómez JF, Hernández Nieves M, Lobo JM (2006) Los Cynipidae (Hymenoptera) de la Comunidad de Madrid: lista anotada, mapas de distribución, riqueza y estatus de conservación. Graellsia 62:371–402

    Article  Google Scholar 

  76. Oviedo JL, Caparrós A, Campos P (2005) Valoración contingente del uso recreativo y de conservación de los visitantes del Parque Natural los Alcornocales. Revista Española de Estudios Agrosociales y Pesqueros 208:115–140

    Google Scholar 

  77. Palahi M, Mavsar R, Gracia C, Birot Y (2008) Mediterranean forests under focus. Int For Rev 10:676–688

    Google Scholar 

  78. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Paper presented at the proceedings of the twenty-first international conference on Machine learning, Banff, Alberta, Canada

  79. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  80. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    PubMed  Article  Google Scholar 

  81. Pinto Correia T (1993) Changes in land use patterns around the Mediterranean basin. Etat de l´Africulture en Mèditerranée. Les sols dans región mèditerraéenne: utilisation, gestión et perspectives d´évolution. Zaragoza: CIHEAM 1993 97–112 (Cahiers Options Méditerranéennes 1(2))

  82. Poyatos R, Latron J, Llorens P (2003) Land use and land cover change after agricultural abandonment. Mt Res Dev 23:362–368

    Article  Google Scholar 

  83. Puerta-Piñero C, Espelta JM, Sánchez-Humanes B, Rodrigo A, Coll L, Brotons L (2012) History matters: previous land use changes determine post-fire vegetation recovery in forested Mediterranean landscapes. For Ecol Manag 279:121–127

    Article  Google Scholar 

  84. Quicke D (2009) Hymenoptera. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic Press, London, pp 473–484

    Chapter  Google Scholar 

  85. Redfern M, Askew RR (1992) Plant galls. Naturalists’ Handbooks 17. Richmond Publishing Company, Slough

    Google Scholar 

  86. Rocchini D et al (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226

    Article  Google Scholar 

  87. Rodà F, Vayreda J, Ninyerola, M (2009) Encinares de Quercus ilex y Quercus rotundifolia. In: VV.AA., Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino. p 94

  88. Rokas A, Atkinson RJ, Brown GS, West SA, Stone GN (2001) Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: demographic history or a Wolbachia selective sweep? Heredity 87:294–304

    CAS  PubMed  Article  Google Scholar 

  89. Rokas A, Atkinson RJ, Webster L, Csóka G, Stone GN (2003) Out of Anatolia: longitudinal gradients in genetic diversity support an eastern origin for a circum-Mediterranean oak gallwasp Andricus quercustozae. Mol Ecol 12:2153–2174

    CAS  PubMed  Article  Google Scholar 

  90. Ronquist F, Liljeblad J (2001) Evolution of the gall wasp-host plant association. Evolution 55:2503–2522

    CAS  PubMed  Google Scholar 

  91. Ruiz-Labourdette D, Nogués-Bravo D, Ollero HS, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J Biogr 39:162–176

    Article  Google Scholar 

  92. Rundel PW (1998) Landscape disturbance in mediterranean-type ecosystems: an overview. In: Rundel P, Montenegro G, Jaksic F (eds) Landscape disturbance and biodiversity in mediterranean-type ecosystems, vol 136., Ecological StudiesSpringer, Berlin Heidelberg, pp 3–22

    Chapter  Google Scholar 

  93. Sánchez de Dios R, Benito-Garzón M, Sainz-Ollero H (2009) Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol 204:189–205

    Article  Google Scholar 

  94. Santos T, Tellería JL, Carbonell R (2002) Bird conservation in fragmented Mediterranean forests of Spain: effects of geographical location, habitat and landscape degradation. Biol Conserv 105:113–125

    Article  Google Scholar 

  95. Santos AMC, Oliveira NG, Nieves-Aldrey JL, Serrano ARM (2003) The gall wasps (Hymenoptera, Cynipidae) of Douro Internacional and serras de Aire e Candeeiros Natural Parks and Paúl do Boquilobo Natural Reserve (Portugal): faunistics, biological notes and distribution. In: Santos AMC Biodiversidade e Conservação de Hymenoptera (Insecta), com ênfase nas Vespas das Galhas (Cynipidae), em algumas Áreas Naturais Portuguesas. Facultad de Ciências, Universidade de Lisboa, Departamento de Biologia Animal, Lisboa, Portugal

  96. Schick KN, Dahlsten DL (2003) Gallmaking and insects. In: Resh VH, Cardé RT (eds) Encyclopedia of Insects. Academic Press, Amsterdam, pp 464–466

    Google Scholar 

  97. Schönrogge K, Crawley MJ (2000) Quantitative webs as a means of assessing the impact of alien insects. J Anim Ecol 69:841–868

    Article  Google Scholar 

  98. Schröter D et al. (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    PubMed  Article  CAS  Google Scholar 

  99. Segurado P, Aráujo MB, Kunin W (2006) Consequences of spatial autocorrelation for niche‐based models. J App Ecol 43:433–444

  100. Sharkey MJ (2007) Phylogeny and classification of Hymenoptera. Zootaxa 1668:521–548

    Google Scholar 

  101. Shaw M (2006) Habitat considerations for parasitic wasps (Hymenoptera). J Insect Conserv 10:117–127

    Article  Google Scholar 

  102. Shaw M, Hochberg M (2001) The neglect of parasitic hymenoptera in insect conservation strategies: the British fauna as a prime example. J Insect Conserv 5:253–263

    Article  Google Scholar 

  103. Shorthouse JD, Wool D, Raman A (2005) Gall-inducing insects—Nature’s most sophisticated herbivores. Basic Appl Ecol 6:407–411

    Article  Google Scholar 

  104. SIVIM data portal. Search in Andorra, Spain and Portugal of: Quercus canariensis, Q. coccifera, Q. faginea, Q. ilex, Q. lusitanica, Q. petraea, Q. pubescens, Q. pyrenaica, Q. robur, Q. suber. Accessed 15 Dec 2013. http://www.sivim.info/sivi/

  105. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    PubMed  Article  Google Scholar 

  106. Statistica-StatSoft, Inc. version 8.0, 2008. www.statsoft.com

  107. Stone GN, Cook JM (1998) The structure of cynipid oak galls: patterns in the evolution of an extended phenotype. Proc R Soc Lond B Biol 265:979–988

    Article  Google Scholar 

  108. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Article  Google Scholar 

  109. Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

    CAS  PubMed  Article  Google Scholar 

  110. Stone GN, Atkinson RJ, Rokas A, Nieves-Aldrey JL, Melika G, Àcs Z, Csóka GY, Hayward A, Bailey R, Buckee C, Mcvean GAT (2008) Evidence for widespread cryptic sexual generations in apparently purely asexual Andricus gallwasps. Mol Ecol 17:652–665

    PubMed  Article  Google Scholar 

  111. Stone GN, Hernandez-Lopez A, Nicholls JA, Di Pierro E, Pujade-Villar J, Melika G, Cook JM (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63:854–869

    CAS  PubMed  Article  Google Scholar 

  112. Svenning J-C, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogr 32:1019–1033

    Article  Google Scholar 

  113. Tavares J (1928) Os Cynípides da Peninsula Ibérica. Brotéria, Série Zoologica 26:11–152

    Google Scholar 

  114. Terribile LC, Lima-Ribeiro MS, Araujo MB, Bizao N, Collevatti RG, Dobrovolski R, Franco AA, Guilhaumon F, de Souza Lima J, Mitsuyuki Murakami D, Nabout JC, de Oliveira C, de Oliveira LK, Rabelo SG, Rangel TF, Simon LM, Soares TM, Campos Telles MP, Felizola JA (2012) Areas of climate stability of species ranges in the Brazilian Cerrado: disentangling uncertainties through time. Nat Conservacao 10:152–159

    Article  Google Scholar 

  115. Tittensor DP et al. (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeogr 36:1111–1128

    Article  Google Scholar 

  116. Thivet G, Blinda M (2011) Los recursos hídricos y forestales y la población del Mediterráneo: situación actual. In Birot, Y, García, C, Palahi M (eds) Agua para los bosques y la sociedad en el Mediterráneo—Un difícil equilibrio. European Forest Institute. What Science can tell us

  117. Tobler WR (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  118. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol Appl 12:354–363

    Google Scholar 

  119. Urbieta IR, Zavala MA, Marañón T (2008) Human and non-human determinants of forest composition in southern Spain: evidence of shifts towards cork oak dominance as a result of management over the past century. J Biogr 35:1688–1700

    Article  Google Scholar 

  120. Urbieta IR, García LV, Zavala MA, Marañón T (2011) Mediterranean pine and oak distribution in southern Spain: Is there a mismatch between regeneration and adult distribution? J Veg Sci 22:18–31

    Article  Google Scholar 

  121. Valladares G, Salvo A, Cagnolo L (2006) Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv Biol 20:212–217

    PubMed  Article  Google Scholar 

  122. Varela S, Lobo JM, Rodríguez J, Batra P (2010) Were the Late Pleistocene climatic changes responsible for the disappearance of the European spotted hyena populations? Hindcasting a species geographic distribution across time. Quat Sci Rev 29:2027–2035

    Article  Google Scholar 

  123. Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299

    Article  Google Scholar 

  124. Villanueva JA (2004) Tercer Inventario Forestal Nacional (1997–2007). Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid

    Google Scholar 

  125. Washburn JO, Cornell HV (1981) Parasitoids, patches, and phenology: their possible role in the local extinction of a cynipid gall wasp. Popul Ecol 62:1597–1607. doi:10.2307/1941515

    Google Scholar 

  126. Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, Veran S (2013) Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol Evol 4:236–243

    Article  Google Scholar 

  127. Yu D, Chen M, Zhou Z, Eric R, Tang Q, Liu H (2013) Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae). Hydrobiologia 700:23–32

    Article  Google Scholar 

  128. Zavala MA, Espelta JM, Retana J (2000) Constraints and trade-offs in Mediterranean plant communities: the case of holm oak-Aleppo pine forests. Bot Rev 66:119–149

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, A., Gómez, J.F. & Nieves-Aldrey, J.L. Modeling the potential distribution and conservation status of three species of oak gall wasps (Hymenoptera: Cynipidae) in the Iberian range. J Insect Conserv 19, 921–934 (2015). https://doi.org/10.1007/s10841-015-9810-5

Download citation

Keywords

  • Cynipid galls
  • Parasitoids
  • Quercus
  • Mahalanobis distances
  • MAXENT
  • Ecological Niche modeling
  • Conservation biology
  • Insect conservation
  • Woodlands