Skip to main content
Log in

How much space is needed for spider conservation? Home range and movement patterns of wolf spiders (Aranea, Lycosidae) at Baltic Sea beaches

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Beaches are often intensively used by tourists that compete with the area demands of specialised species. In order to estimate the area demand of beach spiders, home range, distribution and population dynamics of three species of Lycosidae (Arctosa cinerea, Arctosa perita and Pardosa agricola) were observed by mark-recapture experiments at two closed nature conservation beach areas at the Baltic Sea. Results revealed that the home range size of A. cinerea varied between beaches. The size of minimal complex polygons of males at a narrow sandy beach was 143.18 ± 22.62 m2 (females: 164.70 ± 13.48 m2) and was so significantly smaller than those found at a broader beach (males: 182.60 ± 13.46 m2; females: 179.36 ± 47.89 m2) with about 12 % stone coverage. General distribution of all spiders showed an increased frequency on the upper beach area. Estimates on the population size of the three species during summer revealed the highest population size in May and the least at the end of July. In addition, movement behaviour of A. cinerea was observed at a nature conservation area and at an accessible beach. Direct observations of movement patterns indicated that disturbed spiders take more detours and focus their movements seaward where they will be confronted with non-suitable conditions. This study underlines the sensitivity of predatory arthropods of beach habitats to human disturbance. This is particularly critical for the upper beach area. Based on these results, means of achieving viable arthropod populations through adjusted beach management are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahrens L, Kraus JM (2007) Wolf spider (Araneae, Lycosida) movement along a pond edge. J Arachnol 34:532–539

    Article  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 82:169–193

    Article  Google Scholar 

  • Barnes BM, Barnes RD (1954) The ecology of the spiders of maritime drift lines. Ecology 35:25–35

    Article  Google Scholar 

  • Beale CM, Monaghan P (2004) Behavioural response to human disturbance: a matter of choice? Anim Behav 68:1065–1069

    Article  Google Scholar 

  • Bell JR (1998) The emergence of manipulative experiments in ecological spider research. J Arachnol 33:826–849

    Article  Google Scholar 

  • Bethge W (1973) Ökologisch-physiologische Untersuchungen über die Bindung von Erigone longipalpis (Araneae, Micryphantidae) an das Littoral. Faun-Ökol Mitt 4:223–240

    Google Scholar 

  • Bonte D, Maes D (2008) Trampling affects the distribution of specialised coastal dune arthropods. Basic Appl Ecol 9:726–734

    Article  Google Scholar 

  • Bretz F, Hothorn T, Westfall P (2011) Multiple comparison using R. Chapman & Hall, London

    Google Scholar 

  • Brown AC, McLachlan A (1990) Ecology of sandy shores. Elsevier Science Publisher, Amsterdam

    Google Scholar 

  • Brown AC, McLachlan A (2002) Sandy shore ecosystems and the threats facing them. Some predictions for the year 2025. Environ Conserv 29:62–77

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel interference. A practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cooch E, White G (2011) Program MARK—a gentle introduction, 10th edn. doi:10.3996/122012-JFWM-110R1.S8

    Google Scholar 

  • Defeo O, McLachlan A, Schoeman DS, Schlacher TA, Dugan J, Jones A, Lastra M, Scapini F (2009) Threats to sandy beach ecosystems: a review. Estuar Coast Shelf Sci 81:1–12

    Article  Google Scholar 

  • Dugan JE, Defeo O, Jaramillo E, Jones AR, Lastra M, Nel R, Peterson CH, Scapini F, Schlacher T, Schoeman DS (2012) Give beach ecosystems their day in the sun. Science 329:1146

    Article  Google Scholar 

  • Foelix RF (1979) Biologie der Spinnen. Georg Thieme, Stuttgart

    Google Scholar 

  • Framenau VW (2005) Gender specific differences in activity and home range reflect morphological dimorphism in wolf spiders (Aranaea, Lycosidae). J Arachnol 33:334–346

    Article  Google Scholar 

  • Framenau V, Dieterich M, Reich M, Plachter H (1996) Life cycle, habitat selection and home ranges of Arctosa cinerea (Fabricius, 1777) (Araneae: Lycosidae) in a braided section of the Upper Isar (Germany, Bavaria). Rev Suisse Zool, vol. hors série 1. In: Proceedings of XIIIth international congress arachnology, pp 223–234

  • Gilpin ME (1987) Spatial structure and population vulnerability. In: Soulé ME (ed) Viable population for conservation. University Press, Cambridge

    Google Scholar 

  • Goodman D (1987) The demography of chance extinction. In: Soulé ME (ed) Viable population for conservation. University Press, Cambridge

    Google Scholar 

  • Hackmann W (1957) Studies on the ecology of the wolf spider Trochosa ruricola Deg. Comment Biol 16:1–34

    Google Scholar 

  • Haller I, Stybel N, Schumacher S, Mossbauer M (2011) Will beaches be enough? Future challenges on coastal tourism at the German Baltic Sea. J Coastal Res 61:70–80

    Article  Google Scholar 

  • Heimer S, Nentwig W (1991) Spinnen Mitteleuropas. Ein Bestimmungsbuch. Paul Parey, Berlin

    Google Scholar 

  • Humphreys WF (1987) Behavioural temperature regulation. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Google Scholar 

  • Irmler U (2012) Effects of habitat and human activities on species richness an assemblages of staphylinidae (Coleoptera) in the Baltic Sea. Psyche 2012:1–12

    Article  Google Scholar 

  • Irmler U, Heller K, Meyer H, Reinke H-D (2002) Zonation of ground beetles (Coleoptera: Carabidae) and spiders (Araneida) in salt marshes at the North and the Baltic Sea and the impact of the predicted sea level increase. Biodivers Conserv 11:1129–1147

    Article  Google Scholar 

  • Kirchner W (1987) Behavioural and physiological adaptations to cold. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Google Scholar 

  • Knülle W (1951) Zur Ökologie der Spinnengemeinschaften der Ufern und Küsten. Dissertation, University of Kiel

  • Kraus JM, Morse DH (2005) Seasonal habitat shift in an intertidal wolf spider: proximal cues associated with migration and substrate preference. J Arachnol 33:110–123

    Article  Google Scholar 

  • Kuenzler EJ (1958) Niche relations of three species of lycosid spiders. Ecology 39:494–500

    Article  Google Scholar 

  • Lambeets K, Breyne P, Bonte D (2010) Spatial genetic variation of a riparian wolf spider Pardosa agricola (Thorell, 1856) on lowland river banks: the importance of functional connectivity in linear spatial systems. Biol Conserv 143:660–668

    Article  Google Scholar 

  • Liddle MJ (1975) A selective review of the ecological effects of human trampling on natural ecosystems. Biol Conserv 7:17–36

    Article  Google Scholar 

  • Llewellyn PJ, Shackley SE (1996) The effects of mechanical beach-cleaning on invertebrate populations. Brit Wildlife 7:147–155

    Google Scholar 

  • Martinez ML, Psuty NP (2004) Coastal dunes: ecology and conservation. Springer, Berlin

    Book  Google Scholar 

  • Mühlenberg M, Hovestadt T, Röser J (1991) Are there minimal areas for animal populations? In: Seitz A, Loeschke V (eds) Species conservation: a population-biological approach. Birkhäuser Verlag, Basel

    Google Scholar 

  • Nyffeler M, Benz G (1988) Feeding, ecology and predatory importance of wolf spiders (Pardosa spp) (Aranea, Lycosidae) in winter wheat fields. J Appl Entomol 106:123–134

    Article  Google Scholar 

  • Odum EP, Kuenzler EJ (1955) Measurement of territory and home range size in birds. Auk 72:128–137

    Article  Google Scholar 

  • Palmgren P (1944) Über die Brutpflegeinstinkthandlung der Wolfspinnen (Lycosidae). Soc Scient Fenn Comm Biol 9:1–29

    Google Scholar 

  • Papi F, Tongiorgi P (1963) Innate and learned components in the astronomical orientation of wolf spiders. Ergebn Biol 26:259–280

    Google Scholar 

  • Platnick NI (1993) Advances in spider taxonomy 1988-1991. With synonymies and transfers 1940–1980. New York Entomol. Soc in ass. with The Americ Mus of Nat Hist, New York

  • Sacher P (1992) Rote Liste der Spinnen Brandenburgs. In: Gefährdete Tiere Brandenburgs (Rote Liste). Ministerium für Umwelt, Naturschutz und Raumordnung des Landes Brandenburg, Potsdam

  • Samietz J, Berger U (1997) Evaluation of movement parameters in insects—bias and robustness with regard to resight numbers. Oecologia 110:40–49

    Article  Google Scholar 

  • Schaefer M (1976) Experimentelle Untersuchungen zum Jahreszyklus und zur Überwinterung von Spinnen (Araneida). Zoologische Jahrbücher, Abteilung für Systematik, Oekologie und Geographie der Tiere 103:127–289

    Google Scholar 

  • Schierding M, Vahder S, Dau L, Irmler U (2011) Impacts on biodiversity at Baltic Sea beaches. Biodivers Conserv 20:1973–1985

    Article  Google Scholar 

  • Schierding M, Seer F, Imler U (2013) Ground beetles of the Baltic Sea coast in Schleswig-Holstein (northern Germany)—impacts of environmental parameters and spatial use. Angew Carabidol 10:23–34

    Google Scholar 

  • Schlacher TA, Dugan J, Schoeman DS, Lastra M, Jones A, Scapini F, McLachlan A, Defeo O (2007) Sandy beaches at the brink. Divers Distrib 13:556–560

    Article  Google Scholar 

  • Schultz W, Finch O-D (1996) Biotoptypenbezogene Verteilung der Spinnenfauna der nordwestdeutschen Küstenregion—Charakterarten, typische Arten und Gefährdung. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of open-model capture recapture experiments. Biometrics 52:860–873

    Article  Google Scholar 

  • Seber GAF (1986) A review of estimating animal abundance. Biometrics 42:267–292

    Article  CAS  PubMed  Google Scholar 

  • Sutherland WJ (1996) From individual behaviour to population ecology. University Press, Oxford

    Google Scholar 

  • Vahder S, Irmler U (2010) The spider fauna of Baltic Sea coast habitats. Faun-Ökol Mitt 9:131–148

    Google Scholar 

  • Veloso VG, Lozano M, Perez-Hurtado A, Hortas F, Garcia Garcia F (2008) Response of talitrid amphipods to a gradient of recreational pressure caused by beach urbanization. Mar Ecol 29:126–133

    Article  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, Berlin

    Google Scholar 

  • Węslawski JM, Stanek A, Siewert A, Beer NE (2000) The sandhopper (Talitrus saltator, Montagu, 1808) on the Polish Baltic Coast. Is it a victim of increased tourism? Oceanol Stud 29:77–87

    Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(Supplement):120–138

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgment

Thanks to S. Hellberg, Ch. Langkabel and Ch. Müller for substantial support by marking the Lycosidae. We would like to thank C. Music and two anonymous reviewers for their critical and helpful comments to the manuscript. We thank the Deutsche Bundesstiftung Umwelt (DBU) and the Lighthouse Foundation for funding our project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska K. Seer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seer, F.K., ElBalti, N., Schrautzer, J. et al. How much space is needed for spider conservation? Home range and movement patterns of wolf spiders (Aranea, Lycosidae) at Baltic Sea beaches. J Insect Conserv 19, 791–800 (2015). https://doi.org/10.1007/s10841-015-9800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9800-7

Keywords

Navigation