Skip to main content

Advertisement

Log in

Land management impacts on tree hole invertebrate communities in a Neotropical rainforest

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

The Los Tuxtlas Biosphere Reserve in Southeastern Veracruz, Mexico represents the northernmost Neotropical lowland rainforest and has lost 84 % of its forests in the last forty years. Rich terrestrial and aquatic species communities are found throughout Neotropical forests, habitats increasingly threatened by land management practices. Plant-held waters, phytotelmata, are ecologically important discrete microhabitats harboring many specialist invertebrates and are abundant in tropical forests. In this study, using artificial tree holes, we examined invertebrate tree hole communities in a mature forest of Los Tuxtlas and in a managed habitat adjacent to the Los Tuxtlas Biological Station. Based on the proximity of human and livestock communities to managed habitats and the dispersal limitations of some phytotelmata specialists, we expected to find community composition differences between the two habitats. We found distinct differences in chironomid colonization; Tanypodinae, a predaceous subfamily, was present in the managed habitat and its omnivorous counterpart, Chironominae, was present in the forest. We found differences in mosquito colonization with more predaceous Toxorhychites in the managed habitat. Haemagogus mosquitoes were only present in the managed habitat. These results indicate different colonization ability across phytotelmata specialists and warn of larger community shifts and potential public health hazards with continued and intensified forest fragmentation and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edn. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC, pp 202

  • Barlow J, Gardner TA, Araujo IS, Ávila-Pires TC, Bonaldo AB, Costa JE, Esposito MC, Ferriera LV, Hawes J, Hernandez MIM, Hoogmoed MS, Leite RN, Lo-Man-Hung NF, Malcolm JR, Martins MB, Mestre LAM, Miranda-Santos R, Nunes-Gutjahr AL, Overal WL, Parry L, Peters SL, Riberio-Junior MA, da Silvia MNF, da Silvia Motta C, Peres CA (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci USA 104:18555–18560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bihn JH, Gebauer G, Brandl R (2010) Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91:782–792

    Article  PubMed  Google Scholar 

  • Blakely TJ, Harding JS, Didham RK (2012) Distinctive aquatic assemblages in water-filled tree holes: a novel component of freshwater biodiversity in New Zealand temperate rainforests. Insect Conserv Divers 5:202–212

    Article  Google Scholar 

  • Bloom SA (1981) Similarity indices in community studies: potential pitfalls. Mar Ecol-Prog Ser 5:125–128

    Article  Google Scholar 

  • Burkett-Cadena ND, McClure CJ, Estep LK, Eubanks MD (2013) Hosts or habitats: What drives the spatial distribution of mosquitoes? Ecosphere 4:art30

    Article  Google Scholar 

  • Cayuela L, Benayas JMR, Echeverría C (2006) Clearance and fragmentation of tropical montane forests in the Highlands of Chiapas, Mexico (1975–2000). For Ecol Manag 226:208–218

    Article  Google Scholar 

  • Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767

    Article  CAS  PubMed  Google Scholar 

  • Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Cornell University Press, Ithaca

    Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 1:147–172

    Article  Google Scholar 

  • Delettre YR, Morvan N (2000) Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapes. Freshw Biol 44:399–411

    Article  Google Scholar 

  • Díaz A, Galante E, Favila ME (2010) The effect of the landscape matrix on the distribution of dung and carrion beetles in a fragmented tropical rain forest. J Insect Sci 10:art81

    Article  Google Scholar 

  • Dirzo R, Garcia MC (1992) Rates of deforestation in Los Tuxtlas, a neotropical area in southeast Mexico. Conserv Biol 6:84–90

    Article  Google Scholar 

  • Downing JA, Duarte CM (2009) Abundance and size distribution of lakes, ponds and impoundments. Lakes (formation diversity, distribution). In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Oxford, pp 469–478

    Chapter  Google Scholar 

  • Dunn LH (1927) Observations on the oviposition of Aëdes aegypti, Linn., in relation to distance from habitations. B Entomol Res 18:145–148

    Article  Google Scholar 

  • Estrada A, Coates-Estrada R (1997) Anthropogenic landscape changes and avian diversity at Los Tuxtlas, Mexico. Biodivers Conserv 6:19–43

    Article  Google Scholar 

  • Estrada A, Anzures DA, Coates-Estrada R (1999) Tropical rain forest fragmentation, howler monkeys (Alouatta palliata), and dung beetles at Los Tuxtlas, Mexico. Am J Primatol 48:253–262

    Article  CAS  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515

    Article  Google Scholar 

  • Fellows I (2012) Deducer: a data analysis GUI for R. J Stat Softw 49:1–15

    Google Scholar 

  • Fincke OM (1999) Organization of predator assemblages in Neotropical tree holes: effects of abiotic factors and priority. Ecol Entomol 24:13–23

    Article  Google Scholar 

  • Fincke OM (2006) Use of forest and tree species, and dispersal by giant damselflies (Pseudostigmatidae): their prospects in fragmented forests. In: Rivera AC (ed) Forests and dragonflies. Pensoft, Sofia, pp 103–125

    Google Scholar 

  • Fincke OM, Yanoviak SP, Hanschu RD (1997) Predation by odonates depresses mosquito abundance in water-filled tree holes in Panama. Oecologia 112:244–253

    Article  Google Scholar 

  • Flores JJ, Coates RI, Sánchez’Cordero V, Mendieta VJ (2014) Mamíferos terrestres de la estación de biología tropical de los tuxtlas. Revista Digital Universitaria 15:1–10

    Google Scholar 

  • Frank JH, Lounibos LP (1987) Phytotelmata: swamps or islands? Fla Entomol 70:14–20

    Article  Google Scholar 

  • Galizzi MC, Zilli F, Marchese M (2012) Diet and functional feeding groups of Chironomidae (Diptera) in the Middle Paraná River floodplain (Argentina). Iheringia. Sér Zool 102:117–121

    Article  Google Scholar 

  • García BS, Luna ER (2010) Cambios demograficos en poblaciones de primates de la region sur de Los Tuxtlas, Mexico: analisis longitudinal 1985–2008. Neotrop Primates 17:1–6

    Article  Google Scholar 

  • Gascon C, da Williamson GB, Fonseca GA (2000) Receding forest edges and vanishing reserves. Science 288:1356–1358

    Article  CAS  PubMed  Google Scholar 

  • Ghazoul J (2002) Impact of logging on the richness and diversity of forest butterflies in a tropical dry forest in Thailand. Biodivers Conserv 11:521–541

    Article  Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJA, Laurance WF, Lovejoy TE, Sodhi NS (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381

    Article  CAS  PubMed  Google Scholar 

  • González SE, Dirzo R, Vogt RC (1997) Historia natural de los Tuxtlas. México: Universidad Nacional Autónoma de México, Instituto de Biología: Instituto de Ecología

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, New York, pp 39–54

    Google Scholar 

  • Hildrew AG, Townsend CR, Hasham A (1985) The predatory Chironomidae of an iron-rich stream: feeding ecology and food web structure. Ecol Entomol 10:403–413

    Article  Google Scholar 

  • Ibarra-Macias A, Robinson WD, Gaines MS (2011) Experimental evaluation of bird movements in a fragmented Neotropical landscape. Biol Conserv 144:703–712

    Article  Google Scholar 

  • Jensen P (1987) Ecological studies of free-living aquatic nematodes. Mar Ecol Prog Ser 35:187–196

    Article  Google Scholar 

  • Khazan ES (2014) Tests of biological corridor efficacy for conservation of a Neotropical giant damselfly. Biol Conserv 177:117–125

    Article  Google Scholar 

  • Kitching RL (1971) An ecological study of water-filled tree-holes and their position in the woodland ecosystem. J Anim Ecol 40:281–302

    Article  Google Scholar 

  • Kitching RK (2001) Food webs in phytotelmata: “bottom-up” and “top-down” explanations for community structure. Annu Rev Entomol 46:729–760

    Article  CAS  PubMed  Google Scholar 

  • Knaut AL (1997) Yellow fever and the late colonial public health response in the port of Veracruz. Hahr-Hisp Am Hist R 77:619–644

    Article  Google Scholar 

  • Kolb M, Galicia L (2012) Challenging the linear forestation narrative in the Neo-tropic: regional patterns and processes of deforestation and regeneration in southern Mexico. Geogr J 178:147–161

    Article  Google Scholar 

  • Larsson LC, Pruett CL, Wolfe DH, Patten MA (2013) Fine-scale selection of habitat by the Lesser Prairie-chicken. Southwest Nat 58:135–149

    Article  Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Article  Google Scholar 

  • Leisnham PT, Slaney DP, Lester PJ, Heath ACG (2007) Mosquito density, macroinvertebrate diversity, and water chemistry in water-filled containers: relationships to land use. New Zeal J Zool 34:203–218

    Article  Google Scholar 

  • Lenat DR, Resh VH (2001) Taxonomy and stream ecology—The benefits of genus- and species-level identifications. J N Am Benthol Soc 20:287–298

    Article  Google Scholar 

  • Lips KR, Burrowes PA, Mendelson JR, Parra-Olea G (2005) Amphibian population declines in Latin America: a synthesis. Biotropica 37:222–226

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci Usa 103:3165–3170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez LCS, Rodrigues PJ, Rios RI (1999) Frogs and snakes as phoretic dispersal agents of bromeliad Ostracods (Limnocytheridae: Elpidium) and Annelids (Naididae: Dero). Biotropica 31:705–708

    Article  Google Scholar 

  • Lovejoy TE, Bierregaard RO Jr, Rylands AB, Malcolm JR, Quintela CE, Harper LH, Brown KS, Powell AH, Powell GVN, Schubart HOR, Hays MB (1986) Edge and other effects of isolation on Amazon forest fragments. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 257–285

    Google Scholar 

  • Maguire B (1971) Phytotelmata: biota and community structure determination in plant-held waters. Annu Rev Ecol Syst 2:439–464

    Article  Google Scholar 

  • Mamaev BM, Krivosheina NP (1996) New data on the taxonomy and biology of the family Axymyiidae (Diptera). Ent Rev Wash 45:93–99

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities, vol 28. MjM software design, Gleneden Beach

    Google Scholar 

  • Mendoza E, Fay J, Dirzo R (2005) A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation. Rev Chil Hist Nat 78:451–467

    Article  Google Scholar 

  • Merritt R, Dadd R, Walker E (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Ann Rev Ent 37:349–374

  • Merritt R, Cummins K, Berg M (2008) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing, Dubuque

    Google Scholar 

  • Muñoz AT (1995) La fiebre amarilla en Mézico. Erradicación del Aëdes aegypti. Salud Publica Mexico 37:103–110

    Google Scholar 

  • Ngai JT, Kirby KR, Gilbert B, Starzomski BM, Pelletier AJD, Conner JCR (2008) The impact of land-use on larval insect communities: testing the role of habitat elements in conservation. Écoscience 15:160–167

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan. Accessed 29 June 2015

  • Perfecto I, Rice RA, Greenberg R, van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608

    Article  Google Scholar 

  • Proctor H, Pritchard G (1989) Neglected predators: water mites (Acari: Parasitengona: Hydrachnellae) in freshwater communities. J N Am Benthol Soc 8:100–111

  • R Core Development Team (2013) R version 3.0.2. R Project for Statistical Computing, Vienna, Austria. www.r-project.org

  • Roberts DW (2014) labdsv: ordination and multivariate analysis for ecology. R package version 1.6-1. http://CRAN.R-project.org/package=labdsv. Accessed 29 June 2015

  • Shaw DW, Escalante P, Rappole JH, Ramos MA, Oehlenschlager RJ, Warner DW, Winker K (2013) Decadal changes and delayed avian species losses due to deforestation in the northern Neotropics. PeerJ 1:e179

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith DG (2001) Pennak’s freshwater invertebrates of the United States: Porifera to Crustacea. Wiley, Hoboken

    Google Scholar 

  • Sota T, Mogi M (1996) Species richness and altitudinal variation in the aquatic metazoan community in bamboo phytotelmata from North Sulawesi. Res Popul Ecol 38:275–281

    Article  Google Scholar 

  • Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, Trzcinski KM (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:284–379

    Article  Google Scholar 

  • Stehr FW (1991) Immature insects, vol 2. Kendall/Hunt Publishing, Dubuque

    Google Scholar 

  • Tatem AJ, Rogers DJ, Hay SI (2006) Global transport networks and infectious disease spread. Adv Parasitol 62:293–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Theiler M, Downs WG (1973) The Arthropod-borne viruses of vertebrates: an account of the Rockefeller Foundation Virus Program, 1951–1970. Yale University Press, New Haven

    Google Scholar 

  • Vaca RA, Golicher DJ, Cayuela L, Hewson J, Steininger M (2012) Evidence of incipient forest transition in southern Mexico. PLoS One 7:e42309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandermeer J, Addicott J, Andersen A, Kitasko J, Pearson D, Schnell C, Wilbur H (1972) Observations of Paramecium occupying arboreal standing water in Costa Rica. Ecology 53:291–293

    Article  Google Scholar 

  • Yanoviak SP (1999) Community structure in water-filled tree holes of Panama: effects of hole height and size. Selbyana 20:106–115

    Google Scholar 

  • Yanoviak SP (2001) Container color and location affect macroinvertebrate community structure in artificial tree holes in Panama. Fla Entomol 84:265–271

    Article  Google Scholar 

  • Yanoviak SP, Fincke OM (2005) Sampling methods for water-filled tree holes and their artificial analogues. In: Leather S (ed) Insect sampling in forest ecosystems. Blackwell Publishing, London, pp 168–185

    Chapter  Google Scholar 

  • Yanoviak SP, Lounibos LP, Weaver SC (2006) Land use affects macroinvertebrate community composition in phytotelmata in the Peruvian Amazon. Ann Entomol Soc Am 99:1172–1181

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to R. Coates, A. Bundy, J. Bujan, T. Hallidayschult, ZEEB Journal Club, M. Patten, J. Muñoz, A. Geheber. Funding provided by OU Department of Biology and OU College of Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Khazan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazan, E.S., Bright, E.G. & Beyer, J.E. Land management impacts on tree hole invertebrate communities in a Neotropical rainforest. J Insect Conserv 19, 681–690 (2015). https://doi.org/10.1007/s10841-015-9791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9791-4

Keywords

Navigation