Skip to main content

Advertisement

Log in

Local and landscape effects on bee functional guilds in pigeon pea crops in Kenya

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Pollinators face many challenges within agricultural systems due to landscape changes and intensification which can affect resource availability that can impact pollination services. This paper examines pigeon pea pollination and considers how landscape context and agricultural intensification in terms of pesticide use affects the abundance of bees characterized by species guilds on crops. The study was conducted on six paired farms across a gradient of habitat complexity based on the distance of each farm from adjacent semi-natural vegetation in Kibwezi Sub-county, Kenya. The study found that farms which do not use insecticides in farm management, but are in close proximity to natural habitat have greater bee guild abundance, but at further distances, overall abundance is reduced with or without insecticide use. At 1 km landscape radius, the complexity of habitats but not patch size had a positive impact on the abundance of cavity nesting bees and mason bees, which can be attributed to the interspersion of the small-holder farms with semi-natural habitats across the landscapes producing mosaics of heterogeneous habitats. The study revealed the strongest relationships between fruit set and bee abundance to be with the carpenter bee, social bee and solitary bee guilds, which are among the most abundant bees visiting pigeon pea flowers in this system. Our findings provide the foundation for conservation efforts by identifying which bee guilds pollinated pigeon peas. From this study, we suggest managing the floral and nesting resources that would best support the most abundant crop pollinators, and also reducing insecticide application to the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allsopp M, Tirado R, Johnston P, Santillo D, Lemmens P (2014) Plan bee—living without pesticides moving towards ecological farming. Greenpeace International, Amsterdam, pp 21–39

    Google Scholar 

  • Andersson GKS, Birkhofer K, Rundlof M, Smith HG (2013) Landscape heterogeneity and farming practice alter the species composition and taxonomic breadth of pollinator communities. Basic Appl Ecol 14:540–546

    Article  Google Scholar 

  • Archer CR, Pirk CWW, Carvalheiro LG, Nicolson SW (2014) Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines. Oikos 123(4):401–407

    Article  Google Scholar 

  • Bailey S, Requier F, Nusillard B, Roberts SPM, Potts SG, Bouget C (2014) Distance from forest edge affects bee pollinators in oilseed rape fields. Ecol Evol 4(4):370–380

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbaro L, Pontcharraud L, Vetillard F, Guyon D, Jactel H (2005) Comparative responses of bird, carabid, and spider assemblages to stand and landscape diversity in maritime pine plantation forests. Ecoscience 12:110–121

    Article  Google Scholar 

  • Bates DM (2010) Lme4: mixed-effects modeling with R. Springer, Berlin

    Google Scholar 

  • Blaum N, Mosner E, Schwager M, Jeltsch F (2011) How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach. Biodivers Conserv 20:2333–2345

    Article  Google Scholar 

  • Blitzer EJ, Dormann CF, Holzschuh A et al (2012) Spillover of functionally important organisms between managed and natural habitats. Agric Ecosyst Environ 146:34–43

    Article  Google Scholar 

  • Bommarco R, Biesmeijer JC, Meyer B, Potts SG, Poyry J, Roberts SPM, Steffan-Dewenter I, Ockinger E (2010) Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc R Soc B 277:2075–2082

    Article  PubMed Central  PubMed  Google Scholar 

  • Brittain C, Potts SG (2011) The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl Ecol 12(4):321–331

    Article  Google Scholar 

  • Brittain CA, Vighi M, Bommarco R, Settele J, Potts SG (2010a) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl Ecol 11:106–115

    Article  CAS  Google Scholar 

  • Brittain C, Bommarco R, Vighi M, Barmaz S, Settele J, Potts SG (2010b) The impact of an insecticide on insect flower visitation and pollination in an agricultural landscape. Agric For Entomol 12:259–266

    Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. PNAS 108:662–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalheiro LG, Seymour CL, Veldtman R, Nicolson SW (2010) Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J Appl Ecol 47:810–820

    Article  Google Scholar 

  • Chateil C, Porcher E (2014) Landscape features are a better correlate of wild plant pollination than agricultural practices in an intensive cropping system. Agric Ecosyt Environ 201:51–57

    Article  Google Scholar 

  • Choudhary AK (2011) Effects of pollination control in pigeonpea and their implication. J Food Legumes 24(1):50–53

    Google Scholar 

  • Coulson RN, Pinto MA, Tchakerian MD, Baum KA, Rubink WL, Johnston JS (2005) Feral honey bees in pine forest landscapes of east Texas. For Ecol Manag 215:91–102

    Article  Google Scholar 

  • Crawley MJ (2012) The R book. Wiley, London

    Book  Google Scholar 

  • de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Article  Google Scholar 

  • Deguines N, Jono C, Baude M, Henry M, Julliard R, Fontaine C (2014) Large-scale trade-off between agricultural intensification and crop pollination services. Front Ecol Environ 12:212–217

    Article  Google Scholar 

  • Elkie PC, Rempel RS, Carr AP (1999) Patch analyst user’s manual: a tool for quantifiying landscape structure. Ontario Ministry of Natural Resources. Northwest Science and Technology, Thunder Bay, Ont

    Google Scholar 

  • Feltham H, Park K, Goulson D (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23:317–323

    Article  CAS  PubMed  Google Scholar 

  • Ferreira PA, Boscolo D, Viana BF (2013) What do we know about the effects of landscape changes on plant–pollinator interaction networks? Ecol Indic 31:1–6

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C, Morales JM, Bommarco R, Cunningham SA, Carvalheiro LG, Chacoff NP, Dudenhoffer JH, Greenleaf SS, Holzschuh A, Isaacs R, Krewenka K, Mandelik Y, Mayfield MM, Morandin LA, Potts SG, Ricketts TH, Szentgyorgyi H, Viana BF, Westphal C, Winfree R, Klein AM (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062–1072

    Article  PubMed  Google Scholar 

  • Garibaldi LA et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611

    Article  CAS  PubMed  Google Scholar 

  • Hagen M, Kraemer M (2010) Agricultural surroundings support flower–visitor networks in an Afrotropical rain forest. Biol Conserv 143:1654–1663

    Article  Google Scholar 

  • Harrison S, Bruna E (1999) Habitat fragmentation and large-scale conservation: what do we know for sure? Ecol Indic 22:225–232

    Google Scholar 

  • Hendrickx F, Maelfait JP, van Wingerden W, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diekötter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44:340–351

    Article  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Tscharntke T (2008) Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117:354–361

    Article  Google Scholar 

  • Isaacs R, Kirk AK (2010) Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J Appl Ecol 47:841–849

    Article  Google Scholar 

  • Jha S, Kremen C (2013) Resource diversity and landscape-level homogeneity drive natural bee foraging. Proc Natl Acad Sci USA 110:555–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karanja RHN, Njoroge G, Gikungu M et al (2010) Bee interactions with wild flora around organic and conventional coffee farms in Kiambu Sub-county, central Kenya. J Poll Ecol 2:7–12

    Google Scholar 

  • Kéry M, Schaub M (2012) Bayesian population analysis using WinBUGS: a hierarchical perspective. Elsevier, Oxford

    Google Scholar 

  • Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40(6):947–969

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc B 270:955–961

    Article  PubMed Central  PubMed  Google Scholar 

  • Klein AM, Brittain C, Hendrix SD, Thorp R, Williams N, Kremen C (2012) Wild pollination services to California almond rely on semi-natural habitat. J Appl Ecol 49:723–732

    Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from natural bees at risk from agricultural intensification. PNAS 99:16812–16816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW (2004) The area requirements of an ecosystem service: crop pollination by natural bee communities in California. Ecol Lett 7:1109–1119

    Article  Google Scholar 

  • Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields (ed G Smagghe). PLoS One 7(1):e29268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Coeur D, Baudry J, Burel F, Thenail C (2002) Why and how we should study field boundaries biodiversity in an agrarian landscape context. Agric Ecosyst Environ 89(1–2):23–40

    Article  Google Scholar 

  • Mbuvi DK (2009) Arid lands resource management project II, Makueni Sub-county Annual progress report. Ministry of State for the Development of Northern Kenya and Other Arid lands

  • McGarigal K, Marks BJ (1994) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Forest Science Department, Oregon State University, Corvallis

    Google Scholar 

  • Michener CD (2000) The bees of the world, 1st edn. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Moretti M, de Bello F, Roberts SPM, Potts SG (2009) Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78:98–108

    Article  PubMed  Google Scholar 

  • Nayak GK, Roberts SPM, Garratt M, Breeze TD, Tscheulin T, Harrison-Cripps J, Vogiatzakis IN, Stirpe MT, Potts SG (2015) Interactive effect of floral abundance and semi-natural habitats on pollinators in field beans (Vicia faba). Agric Ecosyst Environ 199:58–66

    Article  Google Scholar 

  • Neumann P, Carreck N (2010) Honey bee colony losses. J Apicult Res 49:1–6

    Article  Google Scholar 

  • Otieno M, Woodcock BA, Wilby A, Vogiatzakis IN, Mauchline AL, Gikungu MW, Potts SG (2011) Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem. Biol Conserv 144:2424–2431

    Article  Google Scholar 

  • Potts S, Roberts S, Dean R, Marris G, Brown M, Jones R, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. J Apicult Res 49(1):15–22

    Article  Google Scholar 

  • Power EF, Stout JC (2011) Organic dairy farming: impacts on insect–flower interaction networks and pollination. J Appl Ecol 48:561–569

    Article  Google Scholar 

  • R: A Language and Environment for Statistical Computing: R Core Team, Vienna, Austria (2013). www.R-project.org

  • Rathcke BJ, Jules ES (1993) Habitat fragmentation and plant–pollinator interactions. Curr Sci 65:273–277

    Google Scholar 

  • Ricketts TH, Lonsdorf EV (2013) Mapping the margin: comparing marginal values of tropical forest remnants for pollination services. Ecol Appl 23:1113–1123

    Article  PubMed  Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Roulston TH, Goodell K (2011) The role of resources and risks in regulating wild bee populations. Annu Rev Entomol 56:293–312

    Article  CAS  PubMed  Google Scholar 

  • Rundlof M, Nilsson H, Smith HG (2008) Interacting effects of farming practice and landscape context on bumblebees. Biol Conserv 141:417–426

    Article  Google Scholar 

  • Sabatier R, Meyer K, Wiegand K, Clough Y (2013) Non-linear effects of pesticide application on biodiversity-driven ecosystem services and disservices in a cacao agroecosystem: a modeling study. Basic Appl Ecol 14:115–125

    Article  CAS  Google Scholar 

  • Sarospataki M, Baldi A, Jozan Z, Erdoes S, Redei T (2009) Factors affecting the structure of bee assemblages in extensively and intensively grazed grasslands in Hungary. Commun Ecol 10:182–188

    Article  Google Scholar 

  • Scheper J, Holzschuh A, Kuussaari M, Potts SG, Rundlof M, Smith HG, Kleijn D (2013) Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—a meta-analysis (ed J Gomez). Ecol Lett 16(7):912–920

    Article  PubMed  Google Scholar 

  • Sheffield CS, Pindar A, Packer L, Kevan PG (2013) The potential of cleptoparasitic bees as indicator taxa for assessing bee communities. Apidologie 44:501–510

    Article  Google Scholar 

  • Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu Rev Ecol Evol Syst 22:115–143

    Article  Google Scholar 

  • Smith AA, Bentley M, Reynolds HL (2013) Wild bees visiting cucumber on midwestern US organic farms benefit from near-farm semi-natural areas. J Econ Entomol 106:97–106

    Article  CAS  PubMed  Google Scholar 

  • Steffan-Dewenter I (2003) Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv Biol 17:1036–1044

    Article  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C et al (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652

    Article  PubMed  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8(8):857–874

    Article  Google Scholar 

  • vanEngelsdorp D, Hayes J, Underwood R, Pettis J (2010) A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J Apicult Res 49(1):7–14

    Article  Google Scholar 

  • Williams NM, Winfree R (2013) Local habitat characteristics but not lanscape urbanization drive pollinator visitation and natural plant pollination in forest remnants. Biol Conserv 160:10–18

    Article  Google Scholar 

  • Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291

    Article  Google Scholar 

  • Winfree R, Williams NM, Gaines H, Ascher JS, Kremen C (2007) Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J Appl Ecol 45:793–802

    Article  Google Scholar 

  • Woodcock BA, Potts SG, Tscheulin T, Pilgrim E, Ramsey AJ, Harrison-Cripps J, Brown VK, Tallowin JR (2009) Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. J Appl Ecol 46:920–929

    Article  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to the Felix Trust for funding this study through a Ph.D. scholarship at the University of Reading. We thank Mr. K. Wambua for his tremendous support with field work. Many thanks to Dr. C. Eardley and Prof. L. Packer for their great help with bee identification. Finally, we thank all the support from the National Museums of Kenya and the farmers of Kibwezi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Otieno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otieno, M., Sidhu, C.S., Woodcock, B.A. et al. Local and landscape effects on bee functional guilds in pigeon pea crops in Kenya. J Insect Conserv 19, 647–658 (2015). https://doi.org/10.1007/s10841-015-9788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9788-z

Keywords

Navigation