Abstract
Understanding how species use and persist in agricultural areas is useful for planning conservation efforts at the landscape scale. Information at the population level is scarce, even for organisms, such as dung beetles, that are traditionally used in biodiversity studies to evaluate the effects of anthropic disturbance. Based on multiple mark–recapture events, the description of movement patterns and three population parameters (population size, survival and recruitment) were compared for two dung beetle species (Dichotomius cf. alyattes and Oxysternon conspicillatum) in a fragmented Andean landscape dominated by sun-grown coffee crops. Interspecific differences were detected in movement patterns and in the minimum distance moved across the landscape, with the latter associated with wing loading and species habitat preferences. D. cf. alyattes was captured in both the forest and in sun-grown coffee plots, but tended to limit its movement to patches of forest, while O. conspicillatum covered large distances in short periods of time across the sun-grown coffee crops (ca. 1.7 km/24 h). The population of each species increased during the months of greatest precipitation, prior to the recruitment of new beetles. Given their great capacity for movement, habitat preference and their differential use of the landscape, the species studied can be used as models to evaluate the functional connectivity of Andean landscapes under high anthropic demand. Our results support the idea of the differential response of species to land-use changes, an aspect that should be considered for effective biodiversity conservation and ecosystem functioning in human-dominated landscapes.
Similar content being viewed by others
References
Arellano L, León-Cortes J, Ovaskainen O (2008) Patterns of abundance and movement in relation to landscape structure: a study of a common scarab (Canthon cyanellus cyanellus) in Southern Mexico. Landsc Ecol 23:69–78
Brown KS Jr (1991) Conservation of neotropical environments: insects as indicators. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Royal Entom. Soc. Symposium XV. Academic Press Inc, San Diego, pp 349–404
Cambefort Y, Hanski I (1991) Dung beetle population biology. In: Hanski I, Cambefort Y (eds) Dung beetle ecology. Princeton University Press, Princeton, New Jersey, pp 36–50
Cultid CA, Medina CA, Martínez B, Escobar AF, Constantino LM, Betancur N (2012) Escarabajos coprófagos (Scarabaeinae) del Eje Cafetero: guía para el estudio ecológico. WCS-Colombia, CENICAFÉ y la Federación Nacional de Cafeteros. Villa María, Colombia
De La Mora A, Murnen CJ, Philpott SM (2013) Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodivers Conserv 22:871–888
Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented habitats. Trends Ecol Evol 11:255–260
Escobar F (2000) Diversidad y distribución de los escarabajos del estiércol (Coleoptera: Scarabaeinae) de Colombia. In: Martín-Piera F, Morrone JJ, Melic A (eds) Hacia un proyecto CYTED para el inventario y estimación de la diversidad entomológica de Iberoamérica PRIBES 2000. Monografías Tercer Milenio, vol 1. Sociedad Entomológica Aragonesa, CYTED, Zaragoza, pp 197–201
Escobar F (2004) Diversity and composition of dung beetles (Scarabaeinae) assemblages in a heterogeneous Andean landscape. Trop Zool 17:123–136
Escobar F, Chacón P (2000) Distribución espacial y temporal en un gradiente de sucesión de la fauna de coleópteros coprófagos (Scarabaeinae, Aphodiinae) en un bosque tropical montano, Nariño-Colombia. Rev Biol Trop 48:961–975
Escobar F, Halffter G, Arellano L (2007) From forest to pasture: an evaluation of the influence of environment and biogeography on the structure of dung beetle (Scarabaeinae) assemblages along three altitudinal gradients in the Neotropical region. Ecography 30:193–208
Espinal LS (1967) Apuntes sobre ecología colombiana. Universidad del Valle, Cali, Colombia
ESRI Inc. (1999–2008) ArcGIS 9.3. License authorized for WCS-Colombia (FEDECAFE) Federación Nacional de Cafeteros de Colombia, Centro Nacional de Investigaciones de Café. (2011) Anuario Meteorológico Cafetero. CENICAFÉ, Chinchiná
FEDECAFE, Federación Nacional de Cafeteros de Colombia, Centro Nacional de Investigaciones de Café (2013) Anuario Meteorológico Cafetero 2012. CENICAFÉ, Chinchiná, Colombia
Guhl A (2004) Coffee production intensification and landscape change in Colombia 1970–2002. In: Millington A, Jepson W (eds) Land change science in the tropics: changing agricultural landscapes. Springer Science, New York, pp 93–115
Hagen M, Kissling WD, Rasmussen C, De Aguiar MAM, Brown LE, Carstensen DW, Alves-Dos-Santos I, Dupont YL, Edwards FK, Genini J, Guimarães PR Jr, Jenkins GB, Jordano P, Kaiser-Bunbury CN, Ledger ME, Maia KP, Marquitti FMD, Mclaughlin Ó, Morellato LPC, O’Gorman EJ, Trøjelsgaard K, Tylianakis JM, Vidal MM, Woodward G, Olesen JM (2012) Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–210
Halffter G, Matthews EG (1966) The natural history of dung beetles of the subfamily Scarabaeinae. Folia Entomol Mex 12–14:1–312
Jolly GM (1965) Explicit estimates from capture–recapture data with both death and immigration-stochastic model. Biometrika 52:225–247
Larsen TH, Lopera A, Forsyth A (2008) Understanding trait-dependent community disassembly: dung beetles, density functions, and forest fragmentation. Conserv Biol 22:1288–1298
Martínez-Quintero B, Cultid-Medina C, Rudas-Grajales J (2013) Método para marcar escarabajos coprófagos (Coleoptera: Scarabaeinae) y su implementación en los Andes de Colombia. Acta Zool Mex 29:448–451
Medina C, Escobar F, Rojas M (1990) Aspectos ecológicos y biomecánicos de Oxysternon conspicillatum (Col: Scarabaeidae) en el Valle del Cauca. Rev Colomb Entomol 6:54–61
Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21
Muriel SB, Kattan GH (2009) Effects of patch size and type of coffee matrix on Ithomiine butterfly diversity and dispersal in cloud-forest fragments. Conserv Biol 23:948–956
Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME, Network The Scarabaeinae Research (2008) Ecological functions and ecosystems services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474
Norberg UM (1994) Wing, design, flight performance, and habitat use in bats. In: Wainwright P, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, USA, pp 205–239
Numa C, Verdú JR, Sánchez A, Galante E (2009) Effect of landscape structure on the spatial distribution of Mediterranean dung beetle diversity. Divers Distrib 15:489–501
Peck SB, Forsyth A (1982) Composition, structure, and competitive behaviour in a guild of Ecuadorian rain forest dung beetles (Coleoptera; Scarabaeidae). Can J Zool 60:1624–1634
Perfecto I, Armbrecht I (2003) The coffee agroecosystems in the neotropical: combining ecological and economic goals. In: Vandermmer JH (ed) Tropical agroecosystems. CRC Press, USA, pp 159–194
Philpott SM, Arendt WJ, Armbrecht I, Bichier P, Diestch TV, Gordon C, Greenberg R, Perfecto I, Reynoso-Santos R, Soto-Pinto L, Tejeda-Cruz C, Williams-Linera G, Valenzuela J, Zolotoff JM (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22:1093–1105
R Core Team (2015) R: a language and environment for statistical computing. R foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/
Rivera L, Armbrecht I (2005) Diversidad de tres gremios de hormigas en cafetales de sombra, de sol y bosques de Risaralda. Rev Colomb Entomol 31:89–96
Rös M, Escobar F, Halffter G (2012) How dung beetles respond to a human-modified variegated landscape in Mexican cloud forest: a study of biodiversity integrating ecological and biogeographical perspectives. Divers Distrib 18:377–389
Roslin LW, Viljanen TJ (2011) Dung beetle populations: structure and consequences. In: Simmons LW, Ridsdill-Smith TJ (eds) Ecology and evolution of dung beetle. Wiley-Blackwell, UK, pp 220–224
Samways MJ, McGeoh M, New TR (2005) Insect conservation: handbook of approaches and methods. Oxford University Press, UK
Seber GAF (1965) A note on the multiple-recapture census. Biometrika 52:249–259
Southwood TRE, Henderson PA (2000) Ecological methods. Blackwell Science, UK
Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystem. Ecology 89:944–951
Acknowledgments
This project was funded by the Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), WCS-Colombia and the Universidad del Valle (Project No. 110652128706) and by the Young Researchers Program of COLCIENCIAS (2012–2013). We are grateful to J. C. Rudas for help in the field and T. Suarez–Joaquí for assistance in the laboratory. We thank the coffee producers of El Tambo–La Celia (Risaralda), and the Risaralda Coffee Producers Committee (Comité de Cafeteros de Risaralda) for technical support, and the anonymous reviewers who helped improve the manuscript.
Conflict of interest
The authors of this manuscript declare that there is no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Cultid-Medina, C.A., Martínez-Quintero, B.G., Escobar, F. et al. Movement and population size of two dung beetle species in an Andean agricultural landscape dominated by sun-grown coffee. J Insect Conserv 19, 617–626 (2015). https://doi.org/10.1007/s10841-015-9784-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10841-015-9784-3