Journal of Insect Conservation

, Volume 19, Issue 3, pp 457–464 | Cite as

Populations of a shrub-feeding butterfly thrive after introduction of restorative shrub cutting on formerly abandoned calcareous grassland

  • Felix Helbing
  • Nele Cornils
  • Gregor Stuhldreher
  • Thomas Fartmann


Calcareous grasslands are one of the most species-rich semi-natural habitat types. However, area and species richness have considerably decreased, particularly due to the cessation of grazing or mowing. Accordingly, habitat restoration has become an important issue in the conservation of these grasslands. The aim of this study was to analyse the role of shrub cutting as a measure to restore habitats of the target butterfly Satyrium spini (Denis and Schiffermüller 1775) on formerly abandoned calcareous grasslands. We compared host plant density and occupancy, as well as egg batch density and size between cut, regularly managed and fallow patches. In total, we counted 3372 Rhamnus cathartica host plants on 17 calcareous grassland patches. On 309 (9 %) of these plants, we found a total of 490 batches containing 1168 eggs. Both R. cathartica and S. spini responded rapidly to restoration: Shrub cutting promoted the rejuvenation of the host plant, resulting in a strong population increase of the butterfly species four years after shrub cutting. The density of the preferred small host plants (growth height < 130 cm), their occupancy, as well as the density and size of the batches on these plants, clearly exceeded those of small plants on fallow and even on traditionally managed calcareous grasslands. Based on this study, we recommend shrub cutting on calcareous grasslands as both a restorative and regular management measure for S. spini habitats. Due to the increasing demand for fuel wood, shrub cutting in overgrown grasslands might even no longer be constrained by economic reasons.


Grazing Habitat restoration Invertebrate Land-use type Mulching Patch connectivity 



We are very grateful to Reinhard Vollmer from Hessen Forst (Forstamt Wolfhagen) who conducted the restoration measures based on our proposal. Many thanks also to Max Freienstein, Laura Hebling, Katrin Irmscher, Cora Sonsalla, Maike Rothweiler, Martin Rudolph, Denise Rupprecht, Anuschka Tecker and Alexander Terstegge for support during field work. Moreover, we are grateful to two anonymous reviewers for valuable comments on an earlier version of the manuscript.


  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and meta-population structure: the key for successful management of pre-Alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185CrossRefGoogle Scholar
  2. Anthes N, Fartmann T, Hermann G (2008) The Duke of Burgundy butterfly and its dukedom: larval niche variation in Hamearis lucina across Central Europe. J Insect Conserv 12:3–14CrossRefGoogle Scholar
  3. Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grassland and heathland community. Trends Ecol Evol 14:63–68PubMedCrossRefGoogle Scholar
  4. Baur B (2014) Dispersal-limited species: a challenge for ecological restoration. Basic Appl Ecol 15:559–564CrossRefGoogle Scholar
  5. Beneš J, Konvička M, Dvořák J, Fric Z, Haveld Z, Pavlíčko A, Vrabec V, Weidenhoffer Z (eds) (2002) Motýli České republiky: Rozšíreni a ochrana [Butterflies of Czech Republic: Distribution and Conservation I]. SOM, PragueGoogle Scholar
  6. Beneš J, Cizek O, Dovala J, Konvička M (2006) Intensive game keeping, coppicing and butterflies: the story of Milovicky Wood, Czech Republic. For Ecol Manag 237:353–365CrossRefGoogle Scholar
  7. Bourn NAD, Thomas JA (2002) The challenge of conserving grassland insects at the margins of their range in Europe. Biol Conserv 104:285–292CrossRefGoogle Scholar
  8. Carleton A, Schultz CB (2013) Restoration action and species response: oviposition habits of Plebejus icarioides fenderi (Lepidoptera: Lycaenidae) across a restoration chronosequence in the Willamette Valley, Oregon, USA. J Insect Conserv 17:511–520CrossRefGoogle Scholar
  9. Dennis RLH (2010) A resource-based habitat view for conservation: butterflies in the British landscape. Wiley, OxfordCrossRefGoogle Scholar
  10. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Muller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176CrossRefGoogle Scholar
  11. Ebert G, Rennwald E (eds) (1991) Die Schmetterlinge Baden-Württembergs. Tagfalter II, vol 2. Ulmer, StuttgartGoogle Scholar
  12. EC (European Commission) (2007) Interpretation manual of European Union habitats: EUR27. European Commission, DG Environment, Brussels (Belgium)Google Scholar
  13. EEA (European Environment Agency) (2005) Agriculture and Environment in EU-15: the IRENA Indicator Report. European Environment Agency, Copenhagen (Denmark)Google Scholar
  14. Ehrlich PR, Hanski I (eds) (2004) On the wings of checkerspots: a model system for population biology. Oxford University Press, OxfordGoogle Scholar
  15. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12:677–688CrossRefGoogle Scholar
  16. Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Biozönologie von Tagfaltern und Widderchen in einer alten Hudelandschaft. Abh Westf Mus Naturkunde 66:1–256Google Scholar
  17. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fennici 43:335–347Google Scholar
  18. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa: von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westf Mus Naturkunde 68:11–57Google Scholar
  19. Fartmann T, Timmermann K (2006) Where to find the eggs and how to manage the breeding sites of the Brown Hairstreak (Thecla betulae (Linnaeus, 1758)) in Central Europe. Nota lepidopterologica 29:117–126Google Scholar
  20. Fartmann T, Müller C, Poniatowski D (2013) Effects of coppicing on butterfly communities of woodlands. Biol Conserv 159:396–404CrossRefGoogle Scholar
  21. Freese A, Beneš J, Bolz R, Cizek O, Dolek M, Geyer A, Gros P, Konvička M, Liegl A, Stettmer C (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Animal Conserv 9:388–397CrossRefGoogle Scholar
  22. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42Google Scholar
  23. Güthler W, Market R, Häusler A, Dolek M (2005) Vertragsnaturschutz im Wald: Bundesweite Bestandsaufnahme und Auswertung. BfN-Skripten 146:1–179Google Scholar
  24. Hegi G (1975) Illustrierte Flora von Mitteleuropa. V. Band, 1. Teil: Dicotyledones, 3. Teil: Linaceae: Violaceae. Paul Parey, Berlin, HamburgGoogle Scholar
  25. Hermann G (2007) Tagfalter suchen im Winter: Zipfelfalter, Schillerfalter und Eisvögel [Searching for Butterflies in Winter: Hairstreaks, Purple Emperos, Poplar Admirals & White Admirals]. Books on Demand, NorderstedtGoogle Scholar
  26. Kiehl K (2009) Renaturierung von Kalkmagerrasen. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen. Spektrum Akademischer Verlag, Heidelberg, pp 265–282CrossRefGoogle Scholar
  27. Kiehl K, Kirmer A, Donath TW, Rasran L, Hölzel N (2010) Species introduction in restoration projects: Evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl Ecol 11:285–299CrossRefGoogle Scholar
  28. Kolbeck H (2013) Kreuzdorn-Zipfelfalter Satyrium spini ([Dennis & Schiffermüller], 1775). In: Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 224–226Google Scholar
  29. Koschuh A, Savas V, Gepp J (2005) Winter-Eifunde von Zipfelfalterarten (Lepidoptera: Lycaenidae) in Graz und Umland (Steiermark, Österreich). Naturschutz Landschaftsplan 37:46–53Google Scholar
  30. Kotowski W, Dzierza P, Czerwinski M, Kozub L, Snieg S (2013) Shrub removal facilitates recovery of wetland species in a rewetted fen. J Nat Conserv 21:294–308CrossRefGoogle Scholar
  31. Krämer B, Kämpf I, Enderle J, Poniatowski D, Fartmann T (2012) Microhabitat selection in a grassland butterfly: a trade-off between microclimate and food availability. J Insect Conserv 16:857–865CrossRefGoogle Scholar
  32. Kudrna O (2002) Distribution atlas of European butterflies. Oedippus 20:1–343Google Scholar
  33. Kurylo JS, Knight KS, Stewart JR, Endress AG (2007) Rhamnus cathartica: native and naturalized distribution and habitat preferences. J Torrey Bot Soc 134:420–430CrossRefGoogle Scholar
  34. Littlewood NA, Stewart AJA, Woodcock BA (2012) Science into practice: how can fundamental science contribute to better management of grasslands for invertebrates? Insect Conserv Div 5:1–8CrossRefGoogle Scholar
  35. Löffler F, Stuhldreher G, Fartmann T (2013) How much care does a shrub-feeding hairstreak butterfly (Satyrium spini) need in calcareous grasslands? Eur J Entomol 110:145–152CrossRefGoogle Scholar
  36. Maes D, Jacobs I, Segers N, Vanreusel W, Van Daele T, Laurisjssens G, Van Dyck H (2014) A resource-based conservation approach for an endangered ecotone species: the Ilex Hairstreak (Satyrium ilicis) in Flanders (north Belgium). J Insect Conserv 18:939–950CrossRefGoogle Scholar
  37. Merckx T, Berwaerts K (2010) What type of hedgerows do Brown hairstreak (Thecla betulae L.) butterflies prefer? Implications for European agricultural landscape conservation. Insect Conserv Div 3:194–204Google Scholar
  38. Merckx T, Huertas B, Basset Y, Thomas J (2013) A global perspective on conserving butterflies and moths and their habitats. In: Macdonald DW, Willis KJ (eds) Key topics in conservation biology 2. Wiley, Oxford, pp 237–257CrossRefGoogle Scholar
  39. Mortimer SR, Hollier JA, Brown VK (1998) Interactions between plant and insect diversity in the restoration of lowland calcareous grasslands in southern Britain. Appl Veg Science 1:10–114CrossRefGoogle Scholar
  40. Müller-Wille W (1981) Westfalen: Landschaftliche Ordnung und Bindung eines Landes, 2nd edn. Aschendorffsche Verlagsbuchhandlung, MünsterGoogle Scholar
  41. Munguira ML, García-Barros E, Martín Cano J (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54Google Scholar
  42. MURL NRW (Ministerium für Umwelt, Raumordung und Landwirtschaft des Landes Nordrhein-Westfalen) (Ed.) (1989) Klima-Atlas von Nordrhein-Westfalen. Landesamt für Agrarordnung, DüsseldorfGoogle Scholar
  43. Nitsche L, Nitsche S (2003) Naturschutzgebiete in Hessen schützen—erleben—pflegen. Band 2: Stadt Kassel, Landkreis Kassel und Schwalm-Eder-Kreis. Cognitio, NiedensteinGoogle Scholar
  44. Poschlod P, WallisDeVries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376CrossRefGoogle Scholar
  45. Power A, Zalat S, Gilbert F (2014) Nowhere left to go: the Sinai Hairstreak Satyrium jebelia. J Insect Conserv 18:1017–1025CrossRefGoogle Scholar
  46. Reinhardt R, Bolz R (2012) Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepitoptera: Papilionoidea et Hesperioidea) Deutschlands. In: Bundesamt für Naturschutz (ed) Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 3: Wirbellose Tiere (Teil 1). Naturschutz Biol Vielfalt 70:167–194Google Scholar
  47. Römermann C, Bernhardt-Römermann M, Kleyer M, Poschlod P (2009) Substitutes for grazing in semi-natural grasslands—do mowing or mulching represent valuable alternatives to maintain vegetation structure? J Veg Science 20:1086–1098CrossRefGoogle Scholar
  48. Schultz CB, Russell C, Wynn L (2013) Restoration, reintroduction, and captive propagation for at-risk butterflies: e review of British and American conservation efforts. Isr J Ecol Evol 54:41–61CrossRefGoogle Scholar
  49. Slamova I, Klecka J, Konvicka M (2013) Woodland and grassland mosaic from a butterfly perspective: habitat use by (Erebia aethiops) (Lepidoptera: Satyridae). Insect Conserv Div 6:243–254CrossRefGoogle Scholar
  50. Steiner R, Hermann G, Settele J (2007) Ökologie einer aussterbenden Population des Segelfalters Iphiclides podalirius (Linnaeus, 1758) [Ecology of an almost extinct population of the Scarce Swallowtail Iphiclides podalirius (Linnaeus, 1758).]. Invertebr Ecol Conserv Monogr 1:1–171Google Scholar
  51. Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe: a review. J Environ Manag 91:22–46CrossRefGoogle Scholar
  52. Stuhldreher G, Villar L, Fartmann T (2012) Inhabiting unusually warm microhabitats and risk-spreading as strategies of a phytophagous insect to survive in common pastures of the Pyrenees. Eur J Entomol 109:527–534CrossRefGoogle Scholar
  53. Thomas JA (1993) Holocene climate changes and warm man-made refugia may explain why a 6th of British butterflies possess unnatural early-successional habitats. Ecography 16:278–284CrossRefGoogle Scholar
  54. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philo Trans Roy Soc B Biol Sci 360:339–357CrossRefGoogle Scholar
  55. Thomas JA, Clarke RT (2004) Extinction rates and butterflies. Science 305:1563–1564CrossRefGoogle Scholar
  56. Thomas JA, Rose RJ, Clarke RT, Thomas CD, Webb NR (1999) Intraspecific variation in habitat availability among ectothermic animals near their climatic limits and their centers of range. Funct Ecol 13(Suppl. 1):55–64CrossRefGoogle Scholar
  57. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc Roy Soc B Biol Sci 268:1791–1796CrossRefGoogle Scholar
  58. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881PubMedCrossRefGoogle Scholar
  59. van Dijk G (1991) The status of semi-natural grasslands in Europe. In: Goriup PD, Batten LA, Norton JA (eds) The conservation of lowland dry grassland birds in Europe. JNCC, Peterborough, pp 15–36Google Scholar
  60. van Swaay C (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318CrossRefGoogle Scholar
  61. van Swaay C, Warren M (eds) (2003) Prime butterfly areas in Europe: priority sites for conservation. National Reference Centre for Agriculture, Nature and Fisheries, Ministry of Agriculture, Nature Management and Fisheries, WageningenGoogle Scholar
  62. Veen P, Jefferson R, de Smidt J, van der Straaten J (2009) Grasslands in Europe of high nature value. KNNV Publishing, ZeistGoogle Scholar
  63. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  64. Watt WB, Boggs CL (2003) Synthesis: butterflies as model systems in ecology and evolution—present and future. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 603–613Google Scholar
  65. Watt AD, Bradshaw RHW, Young J, Alard D, Bolger T, Chamberlain D, Fernández-González F, Fuller R, Gurrea P, Henle K, Johnson R, Kors¢s Z, Lavelle P, Niemelä J, Norwicki P, Rebane, M, Scheidegger C, Sousa JP, van Swaay C, Vanbergen A (2007) Trends in biodiversity in Europe and the impact of land use change. In: Hester RE, Harrison RM (eds) Biodiversity under threat. Issues Environ Science Technol 25:135–160Google Scholar
  66. Willems JH (1990) Calcareous grasslands in continental Europe. In: Hillier H, Walton DHW, Wells DA (eds) Calcareous grasslands. Ecology and management. Bluntisham Books, Bluntisham, pp 3–10Google Scholar
  67. Woodcock BA, Bullock JM, Mortimer SR, Brereton T, Redhead JW, Thomas JA, Pywell RF (2012) Identifying time lags in the restoration of grassland butterfly communities: a multi-site assessment. Biol Conserv 155:50–58CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Felix Helbing
    • 1
  • Nele Cornils
    • 1
  • Gregor Stuhldreher
    • 1
  • Thomas Fartmann
    • 1
    • 2
  1. 1.Department of Community Ecology, Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  2. 2.Ecology, Department of Biology/ChemistryUniversity of OsnabrückOsnabrückGermany

Personalised recommendations