Journal of Insect Conservation

, Volume 19, Issue 1, pp 129–140 | Cite as

Diversity and composition of Arctiinae moth assemblages along elevational and spatial dimensions in Brazilian Atlantic Forest

  • Mauricio Moraes ZenkerEmail author
  • Philip J. DeVries
  • Carla M. Penz
  • José A. Teston
  • André Victor Lucci Freitas
  • Marcio R. Pie


When considering Neotropical Lepidoptera for conservation purposes moths are usually neglected because little is known about their biology, ecology and taxonomy. Using light-traps, we sampled moths in the subfamily Arctiinae (Noctuoidea: Erebidae) along an elevational transect (7–927 m asl) on a steep slope of Atlantic Forest in the southern region of Serra do Mar, Brazil. Serra do Mar assemblages clustered according to three elevational zones. We recorded 294 species of Arctiinae in Serra do Mar, and an approach using rarefaction and extrapolation indicated that species richness decreases with increasing elevation, similarly to patterns found in southern Ecuador and Costa Rica, although diversity in Serra do Mar is lower than in southern Ecuador. The elevational transect samples from Serra do Mar were compared with available data for two other biomes. For such comparative analyses, we focused on the tribe Arctiini, for which assemblages were partitioned into Serra do Mar, Interior Atlantic forest and Pampa. The Brazilian Pampa was expected to be less diverse due to low habitat complexity, but it was not possible to explain the higher diversity of Arctiines in Serra do Mar compared to Interior Atlantic Forest. This discrepancy and the probable reasons behind it are discussed, and directions for future research are proposed. Undoubtedly, there is a great need of extensive taxonomical revisions and basic biology research on Arctiines in the Atlantic Forest, Pampa and probably in other tropical and subtropical habitats. These data should be used to improve future biodiversity research and to produce high quality information as a foundation for effective conservation measures.


Conservation Forest Lepidoptera Lichen moths Light trap Tiger moths 



We thank the IAP (Instituto Ambiental do Paraná) for permits. We also thank Lou Jost for suggestions in a previous version of the manuscript. Michel Laguerre (Institut Européen Chimie et Biologie) helped in species identification. To all inhabitants from the “Serra da Graciosa” that helped in many different ways during field work. MMZ acknowledges support from CNPq [process number 141142/2009-0) and CAPES (process number 5708-11-7)] for PhD fellowships, to the Graduate Course in Entomology (“Universidade Federal do Paraná”) and to the University of New Orleans for helping with financial support, and to FAPESP by a Post-Doctoral fellowship (process number 2013/09647-7). AVLF acknowledges support from FAPESP (Biota-Fapesp—grant 2011/50225-3), from the Brazilian Research Council—CNPq (fellowship 302585/2011-7, and “SISBIOTA-Brasil/CNPq grant 563332/2010-7), and by the National Science Foundation, USA (DEB-1256742). MRP was funded by a grant from CNPq (fellowship 304897/2012-4). This publication is part of the RedeLep “Rede Nacional de Pesquisa e Conservação de Lepidópteros” SISBIOTA-Brasil/CNPq (563332/2010-7), and of the BIOTA-FAPESP Program (2011/50225-3).

Conflict of interest

The authors have declared that no conflict of interests exist.

Supplementary material

10841_2015_9753_MOESM1_ESM.docx (91 kb)
Supplementary material 1 (DOCX 90 kb)
10841_2015_9753_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 18 kb)


  1. Arend LM (1997) Geografia física. In: Hoffmann GR, Arend LM, da Silveira JCB, Bellomo HR, Nunes JLM (eds) Rio Grande do Sul—Aspectos da geografia, 4th edn. Martins Livreiro, Porto Alegre, pp 22–53Google Scholar
  2. Axmacher JC, Holtmann G, Scheuermann L, Brehm G, Muller-Hohenstein K, Fiedler K (2004) Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Divers Distrib 10:293–302CrossRefGoogle Scholar
  3. Beck J, Brehm G, Fiedler K (2011) Links between the environment, abundance and diversity of Andean moths. Biotropica 43:208–217CrossRefGoogle Scholar
  4. Bhawana KC (2009) Mountain biodiversity: reason behind its high diversity and its change with time. The Initiation 3:102–113Google Scholar
  5. Boppré M (1984) Redefining “pharmagophagy”. J Chem Ecol 10:1151–1154CrossRefPubMedGoogle Scholar
  6. Brehm G (2007) Contrasting patterns of vertical stratification in two moth families in a Costa Rican lowland rain forest. Basic Appl Ecol 8:44–54CrossRefGoogle Scholar
  7. Brehm G (2009) Patterns of Arctiidae diversity. In: Conner WE (ed) Tiger moths and Woolly Bears: behavior, ecology and evolution of the Arctiidae, 1st edn. Oxford University Press, New York, pp 223–232Google Scholar
  8. Brehm G, Süßenbach D, Fiedler K (2003) Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26:456–466CrossRefGoogle Scholar
  9. Brummitt N, Lughadha EN (2003) Biodiversity: where’s hot and where’s not. Conserv Biol 17:1442–1448CrossRefGoogle Scholar
  10. Carneiro E, Mielke OHH, Casagrande MM (2014) Skipper richness (Hesperiidae) along elevational gradients in Brazilian Atlantic Forest. Neotrop Entomol 43:27–38CrossRefGoogle Scholar
  11. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547CrossRefPubMedGoogle Scholar
  12. Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404:990–992CrossRefPubMedGoogle Scholar
  13. Cordeiro JLP, Hasenack H (2009) Capítulo 23—Cobertura vegetal atual do Rio Grande do Sul. In: Pillar VP, Müller SC, Castilhos ZMS, Jacques AVL (eds) Campos Sulinos. Ministério do Meio Ambiente, Brasília, pp 285–299Google Scholar
  14. de Almeida FFM, Carneiro CDR (1998) Origem e evolução da Serra do Mar. Rev Bras Geocienc 28:135–150Google Scholar
  15. Diniz-filho JAF, de Marco JRP, Hawkins B (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Diver 3:172–1179Google Scholar
  16. Ferro VG, Diniz IR (2007) Composição de espécies de Arctiidae (Insecta, Lepidoptera) em áreas de Cerrado. Rev Bras Zool 24:635–646CrossRefGoogle Scholar
  17. Ferro VG, Melo AS (2011) Diversity of tiger moths in a Neotropical hotspot: determinants of species composition and identification of biogeographic units. J Insect Conserv 15:643–651CrossRefGoogle Scholar
  18. Ferro VG, Romanowski HP (2012) Diversity and composition of tiger moths (Lepidoptera: Arctiidae) in an area of Atlantic Forest in southern Brazil: is the fauna more diverse in the grassland or in the forest? Zoologia 29(1):7–18CrossRefGoogle Scholar
  19. Ferro VG, Teston JA (2009) Composition of the Arctiidae species (Lepidoptera) in southern Brazil: relationship among vegetation types and among habitat spatial configuration. Rev Bras Entomol 53:278–286CrossRefGoogle Scholar
  20. Fiedler K, Brehm G, Hilt N, Süßenbach D, Häuser CL (2008) Variation of diversity patterns across moth families along a tropical elevational gradient. Ecol Stud 198:167–179CrossRefGoogle Scholar
  21. Freitas AVL, Marini-filho OJ (2011) Plano de ação nacional para a conservação dos lepidópteros ameaçados de extinção. ICMBio, Brasília. Accessed 8 Jan 2014
  22. Frost SW (1957) The Pennsylvania insect light trap. J Econ Entomol 50:287–292CrossRefGoogle Scholar
  23. Fundação SOS Mata Atlântica (2014) Atlas dos Remanescentes Florestais da Mata Atlântica: Período 2012–2013. Accessed 30 July 2014
  24. Hilt N (2005) Diversity and species composition of two different moth families (Lepidoptera: Arctiidae vs. Geometridae) along a successional gradient in the Ecuadorian Andes. Dissertation, University of Bayreuth. Accessed 22 April 2010
  25. Hilt N, Fiedler K (2005) Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Divers Distrib 11:387–398CrossRefGoogle Scholar
  26. Hilt N, Fiedler K (2006) Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: how different are subfamilies and tribes? J Biogeogr 33:108–120CrossRefGoogle Scholar
  27. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513CrossRefPubMedGoogle Scholar
  28. Hole GD, Young KR, Seimon A, Wichtendahl CG, Hoffmann D, Paez KS, Sanchez S, Muchoney D, Grau HR, Ramirez E (2011) Adaptive management for biodiversity conservation under climate change—a tropical Andean perspective. In: Herzog SK, Martinez R, Jørgensen PMM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes, Inter-American Institute for Global Change Research, pp 19–46. Accessed 20 July 2014
  29. Holyoak M, Jarosik V, Novák I (1997) Weather-induced changes in moth activity bias measurement of long-term population dynamics from light trap samples. Entomol Exp Appl 83:329–335CrossRefGoogle Scholar
  30. Hsieh TC, Ma KH, Chao A (2013) iNEXT online: interpolation and extrapolation (version 1.0) [Software]. Accessed 21 July 2014
  31. Iserhard CA (2003) Levantamento da diversidade de borboletas (Lepidoptera: Papilionoidea e Hesperioidea) e sua variação ao longo de um gradiente elevational em uma região de Mata Atlântica, município de Maquine, RS. Dissertation, Universidade Federal do Rio Grande do SulGoogle Scholar
  32. Kristensen NP, Scoble MJ, Karsholt O (2007) Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699–747Google Scholar
  33. Lazzari SMN, Lazzarotto CM (2005) Distribuicão elevational e sazonal de Afídeos (Hemiptera: Aphididae) na Serra do Mar do Paraná. Rev Bras Zool 22:891–897CrossRefGoogle Scholar
  34. Lewinsohn TM, Freitas AVL, Prado PI (2005) Conservation of terrestrial invertebrates and their habitats in Brazil. Conserv Biol 19:640–645CrossRefGoogle Scholar
  35. Magurran AE (2004) Measuring biological diversity. Oxford Blackwell Science, OxfordGoogle Scholar
  36. Magurran AE, Mcgill BJ (2011) Biological Diversity: Frontiers in measurement and assessment. Oxford University Press, New YorkGoogle Scholar
  37. Marinoni RC, Dutra RRC (1996) Levantamento da fauna entomológica do Estado do Paraná. II. Ctenuchidae (Lepidoptera). Rev Bras Zool 13:435–461CrossRefGoogle Scholar
  38. Messerli B, Ives JD (eds) (1997) Mountains of the world: a global priority. The Parthenon Publishing Group, NashvilleGoogle Scholar
  39. Mittermeier RA, Mittermeier CG, Brooks TM, Pilgrim JD, Konstant WR, da Fonseca GAB, Kormos C (2003) Wilderness and biodiversity conservation. PNAS 100(18):10309–10313CrossRefPubMedCentralPubMedGoogle Scholar
  40. Molina-Martínez A, León-Cortés JL, Regan HM (2013) Climatic and geometric constraints as driving factors of butterfly species richness along a Neotropical elevational gradient. J Insect Conserv 17:1169–1180CrossRefGoogle Scholar
  41. Mönkkönen M, Mutanen M (2003) Occurrence of Moths in Boreal Forest Corridors. Conserv Biol 17:468–475CrossRefGoogle Scholar
  42. Morelatto LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest. Biotropica 32:786–792CrossRefGoogle Scholar
  43. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  44. Novotny V, Basset Y (2000) Rare species in communities of tropical insects herbivores: pondering the mystery of singletons. Oikos 89:564–572CrossRefGoogle Scholar
  45. Oksanen J, Kindt R, Legendre P, O’hara R, Simpson GL, Stevens MHH (2013) Vegan: community ecology package. R package version 1.13-0. Assessed 9 July 2014
  46. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Accessed 10 Nov 2013
  47. Ribeiro DBR, Prado PI, Brown KS Jr, Freitas AVL (2008) Additive partitioning of butterfly diversity in a fragmented landscape: importance of scale and implications for conservation. Divers Distrib 14:961–968CrossRefGoogle Scholar
  48. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  49. Ribeiro DBR, Batista R, Prado PI, Brown KS Jr, Freitas AVL (2012) The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodiv Conserv 21:811–827CrossRefGoogle Scholar
  50. Roderjan CV, Galvão F, Kuniyoshi YS, Hatschbach GG (2002) As unidades fitogeográficas do estado do Paraná, Brasil. Rev Ciênc Ambient 24:75–92Google Scholar
  51. Schulze CH, Linsenmair KE, Fiedler K (2001) Understory versus canopy: patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecol 153:133–152CrossRefGoogle Scholar
  52. Scoble MJ (1995) The Lepidoptera form, function and diversity. Oxford University Press, New YorkGoogle Scholar
  53. Scott CH, Zaspel JM, Chialvon P, Weller SJ (2014) A preliminary molecular phylogenetic assessment of the lichen moths (Lepidoptera: Erebidae: Arctiinae: Lithosiini) with comments on palatability and chemical sequestration. Syst Entomol 39:286–303CrossRefGoogle Scholar
  54. Süßenbach D (2003) Diversität von Nachtfaltergemeinschaften entlang eines Höhengradienten in Südecuador (Lepidoptera: Pyraloidea, Arctiidae). Dissertation, University of Bayreuth Accessed 20 June 2012
  55. Teston JA, Corseuil E (2004) Diversidade de Arctiinae (Lepidoptera, Arctiidae) capturados com armadilha luminosa, em seis comunidades no Rio Grande do Sul, Brasil. Rev Bras Entomol 48:77–90CrossRefGoogle Scholar
  56. Teston JA, Specht A, Di Mare RA, Corseuil E (2006) Arctiinae (Lepidoptera, Arctiidae) coletados em unidades de conservação estaduais do Rio Grande do Sul, Brasil. Rev Bras Entomol 50:280–286CrossRefGoogle Scholar
  57. Truxa C, Fiedler K (2012) Attraction to light—from how far do moths (Lepidoptera) return to weak artificial sources of light? Eur J Entomol 109:77–84CrossRefGoogle Scholar
  58. Vanhoni F, Mendonça F (2008) O clima no litoral do Estado do Paraná. Rev Bras Climatol 3:49–63Google Scholar
  59. Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira adaptada a um sistema universal.Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brazil. Accessed 20 July 2012
  60. Weller S, DaCosta M, Simmons R, Dittmar K, Whiting M (2009) Evolution and taxonomic confusion in Arctiidae. In: Conner WE (ed) Tiger moths and Woolly Bears: behavior, ecology and evolution of the Arctiidae, 1st edn. Oxford University Press, New York, pp 223–232Google Scholar
  61. Yela JL, Holyoak M (1997) Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae). Environ Entomol 26:1283–1290CrossRefGoogle Scholar
  62. Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L, Holloway JD, Wahlberg N (2011) A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zool Scr 40:158–173Google Scholar
  63. Zahiri R, Holloway JD, Kitching IJ, Lafontaine JD, Mutanen M, Wahlberg N (2012) Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst Entomol 37:102–124CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mauricio Moraes Zenker
    • 1
    Email author
  • Philip J. DeVries
    • 2
  • Carla M. Penz
    • 2
  • José A. Teston
    • 3
  • André Victor Lucci Freitas
    • 1
  • Marcio R. Pie
    • 4
  1. 1.Departamento de Biologia Animal and Museu de Zoologia, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Department of Biological SciencesUniversity of New OrleansNew OrleansUSA
  3. 3.Universidade Federal do Oeste do Pará, Programa de Pós-Graduação em Recursos Naturais da AmazôniaSantarémBrazil
  4. 4.Laboratório de Dinâmica Evolutiva e Sistemas ComplexosUniversidade Federal do ParanáParanáBrazil

Personalised recommendations