Advertisement

Journal of Insect Conservation

, Volume 19, Issue 2, pp 393–402 | Cite as

Impact of nitrogen deposition on larval habitats: the case of the Wall Brown butterfly Lasiommata megera

  • Esther Klop
  • Bram Omon
  • Michiel F. WallisDeVriesEmail author
ORIGINAL PAPER

Abstract

Nitrogen deposition is considered as one of the main threats to biodiversity and ecosystem functioning. Three mechanisms have been proposed to explain the detrimental effect of excess nitrogen on butterflies: loss of host plants, deterioration of food plant quality and microclimatic cooling in spring. Here, we investigated whether these mechanisms might explain the dramatic recent decline of the Wall Brown butterfly Lasiommata megera. Monitoring data from the Netherlands indeed show a greater decline at higher critical load exceedance of nitrogen deposition. Loss of host plants is not a likely explanation of the decline for this grass-feeding species. In a greenhouse experiment, we only found beneficial effects of nitrogen fertilization on larval performance, which seems to rule out a nutritional cause; application of a drought treatment did not result in significant effects. Microclimatic conditions at overwintering larval sites of L. megera and the related but increasing Pararge aegeria provided a possible clue. In comparison with larval sites of P. aegeria, those of L. megera showed higher temperatures at the mesoscale and less plant cover and more dead plant material at the microscale. L. megera caterpillars were also found closer to the shelter of vertical structures. The greater dependence on warm microclimates suggests that microclimatic cooling through excess nitrogen contributes to the recent decline of L. megera.

Keywords

Nitrogen deposition Larval ecology Microclimate Habitat quality Butterflies 

Notes

Acknowledgments

Arjan van Hinsberg (RIVM) kindly provided the data on nitrogen deposition. We thank the many volunteers contributing to the Dutch butterfly Monitoring Scheme, a joint project of Dutch Butterfly Conservation and Statistics Netherlands (CBS), financed by the Ministry of Economic Affairs (EZ). We greatly acknowledge the help of the Wageningen Unifarm staff (Nergena) and advice of Hugo van der Meer (PRI) in setting up the greenhouse experiment, Jan van Walsem (WU-NCP) and Annemarie van den Driessche (WU-REG) for carrying out the chemical analyses. We are furthermore grateful to Thieu Pustjens (DLF-Trifolium) for providing the D. glomerata tillers and to Gerrit Klop for his help in collecting butterflies and plant samples. We thank Anthonie Stip, Dirk Maes (INBO Brussels) and Hans Van Dyck (UC Louvain) for stimulating discussions. The comments of three anonymous reviewers substantially improved the final manuscript.

References

  1. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millenium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  2. Berendsen HJA (2005) Landschappelijk Nederland. Fysische geografie van Nederland. 3rd revised Ed, Koninklijke Van Gorcum, AssenGoogle Scholar
  3. Betzholtz PE, Pettersson LB, Ryrholm N, Franzén M (2013) With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc R Soc B 280:20122305CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bink FA (1992) Ecologische atlas van de dagvlinders van Noordwest-Europa. Schuyt & Co, HaarlemGoogle Scholar
  5. Bink FA, Siepel H (1996) Nitrogen and phosphorus in Molinia caerulea (Gramineae) and its Impact on the larval development in the butterfly-species Lasiommata megera (Lepidoptera: Satyridae). Entomol Gener 20:271–280CrossRefGoogle Scholar
  6. Bobbink R, Hettelingh JP (eds) (2011) Review and revision of empirical critical loads and dose–response relationships. Report Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM), De BiltGoogle Scholar
  7. Bos FG, Bosveld MA, Groenendijk DG, Van Swaay CAM, Wynhoff I (2006) De Dagvlinders van Nederland: Verspreiding en Bescherming. Nederlandse Fauna 7. Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij and EIS, LeidenGoogle Scholar
  8. Convention of Biological Diversity (2010) Global biodiversity outlook 3. Secretariat of the Convention on Biological Diversity, MontréalGoogle Scholar
  9. Dennis RLH (2004) Just how important are structural elements as habitat components? Indications from a declining lycaenid butterfly with priority conservation status. J Insect Conserv 8:37–45CrossRefGoogle Scholar
  10. Dennis RLH, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodiv Conserv 15:1943–1966CrossRefGoogle Scholar
  11. Dover JW, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27CrossRefGoogle Scholar
  12. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs – Band 2: Tagfalter II. Eugen Ulmer, Stuttgart, pp 116–123Google Scholar
  13. Fischer K, Fiedler K (2000) Response of the copper butterfly Lycaena tityrus to increased leaf nitrogen in natural food plants: evidence against the nitrogen limitation hypothesis. Oecologia 124:235–241CrossRefGoogle Scholar
  14. Güsewell S, Koerselman W, Verhoeven JTA (2003) Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384CrossRefGoogle Scholar
  15. Haddad NM, Haarstad J, Tilman D (2000) The effects of long-term nitrogen loading on grassland insect communities. Oecologia 124:73–84CrossRefGoogle Scholar
  16. Huberty AF, Denno RF (2004) Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398CrossRefGoogle Scholar
  17. Karlsson B, Van Dyck H (2009) Evolutionary ecology of butterfly fecundity. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 189–197Google Scholar
  18. Kingsolver JG, Woods HA (1997) Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiol Zool 70:631–638CrossRefPubMedGoogle Scholar
  19. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Ann Rev Ecol Syst 11:119–161CrossRefGoogle Scholar
  20. Merckx T, Van Dyck H (2006) Landscape structure and phenotypic plasticity in flight morphology in the butterfly Pararge aegeria. Oikos 113:226–232CrossRefGoogle Scholar
  21. Mevi-Schütz J, Erhardt A (2003) Effects of nectar amino acids on fecundity of the Wall Brown butterfly (Lasiommata megera L.). Basic Appl Ecol 4:413–421CrossRefGoogle Scholar
  22. Morecroft MD, Bealey CE, Howells O, Rennie S, Woiwod IP (2002) Effects of drought on contrasting insect and plant species in the UK in the mid-1990s. Glob Ecol Biogeogr 11:7–22CrossRefGoogle Scholar
  23. Munguira ML, García-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve T, Konvička M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54Google Scholar
  24. Nijssen M, Siepel H (2010) The characteristic fauna of inland drift sands. In: Fanta J, Siepel H (eds) Inland drift sand landscapes. KNNV Publishing, Zeist, pp 256–278Google Scholar
  25. Oliver TH, Smithers RJ, Bailey S, Walmsley CA, Watts K (2012a) A decision framework for considering climate change adaptation in biodiversity conservation. J Appl Ecol 49:1247–1255CrossRefGoogle Scholar
  26. Oliver TH, Thomas CD, Hill JK, Brereton T, Roy DB (2012b) Habitat associations of thermophilous butterflies are reduced despite climatic warming. Glob Change Biol 18:2720–2729CrossRefGoogle Scholar
  27. Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18:3–6CrossRefGoogle Scholar
  28. Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation: the British butterfly monitoring scheme. Chapman & Hall, LondonGoogle Scholar
  29. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  30. Sall J, Creighton L, Lehman A (2005) JMP Start Statistics: a guide to statistics and data analysis using JMP and JMP IN software. Brooks/Cole-Thomson Learning, BelmontGoogle Scholar
  31. Schweiger O, Harpke A, Wiemers M, Settele J (2013) CLIMBER: climatic niche characteristics of the butterflies in Europe. ZooKeys 367:65–84CrossRefGoogle Scholar
  32. Shreeve TG (1986) Egg-laying by the speckled wood butterfly (Pararge aegeria): the role of female behaviour, host plant abundance and temperature. Ecol Entomol 11:229–236CrossRefGoogle Scholar
  33. Stoutjesdijk P, Barkman JJ (1992) Microclimate, vegetation and fauna. Opulus Press, KnivstaGoogle Scholar
  34. Tao L, Hunter MD (2012) Does anthropogenic nitrogen deposition induce phosphorus limitation in herbivorous insects? Glob Change Biol 18:1843–1853CrossRefGoogle Scholar
  35. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJ, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds and plants and the global extinction crisis. Science 303:1879–1881CrossRefPubMedGoogle Scholar
  36. Travis JMJ, Delgado M, Bocedi G, Baguette M, Barton K, Bonte D et al (2013) Dispersal and species’ responses to climate change. Oikos 122:1532–1540CrossRefGoogle Scholar
  37. Turlure C, Radchuk V, Baguette M, Meijrink M, van den Burg A, WallisDeVries M, van Duinen G-J (2013) Plant quality and local adaptation undermine relocation in a bog specialist butterfly. Ecol Evol 3:244–254CrossRefPubMedCentralPubMedGoogle Scholar
  38. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363CrossRefPubMedGoogle Scholar
  39. Van Dyck H, Van Strien AJ, Maes D, Van Swaay CAM (2009) Declines in common, widespread butterflies in a landscape under intense human use. Conserv Biol 23:957–965CrossRefPubMedGoogle Scholar
  40. Van Hinsberg A, Reijnen R, Goedhart P, De Knegt B, Van Esbroek M (2008) Relation between critical load exceedance and loss of protected species. In: Hettelingh JP, Posch M, Slootweg J (eds) CCE Status Report 2008: critical load, dynamic modelling and impact in Europe. Coordination Centre for Effects, Netherlands Environmental Assessment Agency, De Bilt, pp 73–81Google Scholar
  41. Van Strien AJ, van de Pavert R, Moss D, Yates TJ, Van Swaay CAM, Vos P (1997) The statistical power of two butterfly monitoring schemes to detect trends. J Appl Ecol 34:817–828CrossRefGoogle Scholar
  42. Van Swaay C, Van Strien A et al (2013) The European grassland butterfly indicator: 1990–2011. EEA Technical Report no 11/2013, European Environment Agency, CopenhagenGoogle Scholar
  43. Van Swaay CAM, Plate CL, Van Strien A (2002) Monitoring butterflies in the Netherlands: how to get unbiased indices. Proc Exp Appl Entomol NEV Amst 13:21–27Google Scholar
  44. Van Swaay CAM, Cuttelod A, Collins S, Maes D, Munguira M, Šašić M, Settele J, Verovnik R, Verstrael T, Warren MS, Wiemers M, Wynhoff I (2010) European red list of butterflies. IUCN red list of threatened species—regional assessment. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  45. Velders GJM, Aben JMM, Van Jaarsveld JA, Van Pul WAJ, De Vries WJ, Van Zanten MC (2009) Grootschalige stikstofdepositie in Nederland. Planbureau voor de leefomgeving, De BiltGoogle Scholar
  46. WallisDeVries MF, Baxter W, van Vliet AJH (2011) Beyond climate envelopes: effects of weather on regional population trends in butterflies. Oecologica 167:559–571CrossRefGoogle Scholar
  47. WallisDeVries MF (2004) A quantitative conservation approach for the endangered butterfly Maculinea alcon. Conserv Biol 18:489–499Google Scholar
  48. WallisDeVries MF (2006) Larval habitat quality and its significance for the conservation of Melitaea cinxia in Northwestern Europe. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa, vol 3/4. Abhandlungen aus dem Westfalischen Museum fur Naturkunde, pp 281–294Google Scholar
  49. WallisDeVries MF (2014) Linking species assemblages to environmental change: moving beyond the specialist–generalist dichotomy. Basic Appl Ecol. doi: 10.1016/j.baae.2014.05.001 Google Scholar
  50. WallisDeVries MF, van Swaay CAM (2006) Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Glob Change Biol 12:1620–1626CrossRefGoogle Scholar
  51. WallisDeVries MF, Van Swaay CAM (2013) Effects of local variation in nitrogen deposition on butterfly trends in The Netherlands. Proc Neth Entomol Soc Meet 24:9–17Google Scholar
  52. Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B et al (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69CrossRefPubMedGoogle Scholar
  53. Weiss SB (1999) Cars, cows, and checkerspot butterflies: nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conserv Biol 13:1476–1486CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Esther Klop
    • 1
  • Bram Omon
    • 1
  • Michiel F. WallisDeVries
    • 1
    • 2
    Email author
  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
  2. 2.De Vlinderstichting/Dutch Butterfly ConservationWageningenThe Netherlands

Personalised recommendations