Endangered Quino checkerspot butterfly and climate change: Short-term success but long-term vulnerability?

Abstract

The butterfly Euphydryas editha is known to be vulnerable to climate events that exacerbate natural phenological asynchrony between insect and hosts. In prior work, populations of E. editha have been more persistent at high latitudes and high elevations than in the south and at low elevations, consistent with response to observed warming climate. However, poleward range shifts by the endangered subspecies E. e. quino are blocked by urbanization and range shifts to higher elevation may require host shifts. Prior studies were inconclusive as to whether elevational and host shifts were already occurring. Here, we re-evaluate this scenario with new evidence from molecular genetics, host-choice behaviour and field recording of butterfly distribution. We found a statistically significant upward shift in population distribution since 2009. Insects in the expanding region were neither genomic outliers within Quino nor specifically adapted to their principal local host genus, Collinsia. These diverse data collectively support the hypothesis that an elevational range expansion is already in progress, accompanied and facilitated by a shift of principal host from Plantago to Collinsia. Quino appears resilient to warming climate. However, projections indicate that most or all of Quino’s current range in the USA, including the new high elevation expansion, will become uninhabitable. Our most frequent projected future range (circa 2050) is c. 400 km northward from current populations, hence conservation of Quino may eventually require assisted colonization. For now, Critical Habitat (sensu Endangered Species Act) has been designated at sites around the new upper elevational limit that were not known to be occupied. Designating Critical Habitat outside the historic range is a pioneering response to climate change. This politically challenging, non-traditional, climate change-oriented conservation effort exemplifies flexible thinking needed for species vulnerable to climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bennett NL, Severns PM, Parmesan C, Singer MC (2015) High resilience to climate change predicted in a butterfly with strong local adaptation. Oikos Early View online EV1–EV13. doi:10.1111/oik.01490

  2. Boggs CL, Holdren CE, Kulahci IG, Bonebrake TC, Inouye BD, Fay JP, McMillan A, Williams EH, Ehrlich PR (2006) Delayed population explosion of an introduced butterfly. J Anim Ecol 75:466–475

    Article  PubMed  Google Scholar 

  3. Bridle JR, Buckley J, Bodsworth EJ, Thomas CD (2014) Evolution on the move: specialization on widespread resources asssociated with rapid range expansion in response to climate change. Proc R Soc B 281:20131800

    Article  PubMed Central  PubMed  Google Scholar 

  4. Buckley J, Bridle JR (2014) Loss of adaptive variation during evolutionary responses to climate change. Ecol Lett 17:1316–1325

    Article  PubMed  Google Scholar 

  5. Center for Biological Diversity (2010) Study: 60 % of species recovery plans identify global warming as extinction threat but plans remain inconsistent, hindered by lack of federal guidance. http://www.biologicaldiversity.org/news/press_releases/2010/recovery-plans-08-12-2010.html

  6. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011a) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  7. Chen I-C, Hill JK, Shiu H-J, Holloway JD, Benedick S, Chey VK, Barlow HS, Thomas CD (2011b) Asymmetric boundary shifts of tropical montane lepidoptera over four decades of climate warming. Glob Ecol Biogeogr 20:34–45

    Article  Google Scholar 

  8. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility, chap. 12. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 1029–1136

  9. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    Article  CAS  PubMed  Google Scholar 

  10. DeVictor V, Van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliölä J, Herrando S, Julliard R, Kuussaari M, Lindström A, Reif J, Roy DB, Schweiger O, Settele J, Stefanescu C, Van Strien A, Van Turnhout C, Vermouzek Z, WallisDeVries M, Wynhoff I, Jiguet F (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Change 2:121–124

    Article  Google Scholar 

  11. DiLuzio M, Johnson GL, Daly C, Eischeid JK, Arnold JG (2008) Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J Appl Meteorol Climatol 47:475–497

    Article  Google Scholar 

  12. Ehrlich PR, Murphy DD, Singer MC, Sherwood CB (1980) Extinction, reduction, stability and increase: the responses of checkerspot butterfly (Euphydryas) populations to the California drought. Oecologia 46:101–105

    Article  Google Scholar 

  13. ESA (1973) US Endangered Species Act of 1973, as amended, Pub. L. No. 93-205, 87 Stat. 884. 28 December 1973. http://www.fws.gov/endangered/esa-library/pdf/ESAall.pdf

  14. Evans DM, Che-Castaldo JP, Crouse D, Davis FW, Epanchin-Niell R, Flather CH, Frohlich RK, Goble DD, Li Y-W, Male TD, Master LL, Moskwik M, Neel MC, Noon BR, Parmesan C, Schwartz MW, Scott JM, Williams BK (in press) Species recovery in the United States: assessing the Endangered Species Act. Issues Ecol

  15. Foden WB, Butchart SHM, Stuart SN, Vié J-C, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L, Donner SD, Katariya V, Bernard R, Holland RA, Hughes AF, O’Hanlon SE, Garnett ST, Sekercioglu CH, Mace GM (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8(6):e65427. doi:10.1371/journal.pone.0065427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Forister ML, Shapiro AM (2003) Climatic trends and advancing spring flight of butterflies in lowland California. Glob Change Biol 9:1130–1135

    Article  Google Scholar 

  17. Forister ML, McCall AC, Sanders NJ, Fordyce JA, Thorne JH, O’Brien J, Waetjen DP, Shapiro AM, Berenbaum MR (2010) Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc Natl Acad Sci USA 107:2088–2092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Franco AMA, Hill JK, Kitsche C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553

    Article  Google Scholar 

  19. Gillson L, Dawson TP, Sam J, McGeoch MA (2013) (2013) Accommodating climate change contingencies in conservation strategy. Trends Ecol Evol 28:135

    Article  PubMed  Google Scholar 

  20. Glick P, Stein BA, Edelson NA (eds) (2011) Scanning the conservation horizon: a guide to climate change vulnerability assessment. National Wildlife Federation, Washington

    Google Scholar 

  21. Gomulkiewicz R, Shaw RG (2013) Evolutionary rescue beyond the models. Philos Trans R Soc B Sci 368(1610):20120093

    Article  Google Scholar 

  22. Gonzalez A, Bell G (2013) Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress. Philos Trans R Soc B Sci 368(1610):20120079

    Article  Google Scholar 

  23. Hanski I, Singer MC (2001) Extinction-colonization dynamics and host-plant choice in butterfly metapopulations. Amer Natur 158:341–353

  24. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface, chap. 2. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254

  25. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  26. Hellmann JJ (2002) The effect of an environmental change on mobile butterfly larvae and the nutritional quality of their hosts. J Anim Ecol 71:925–936

    Article  Google Scholar 

  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  28. Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B 269:2163–2171

    Article  CAS  Google Scholar 

  29. Hoegh-Guldberg O, Hughes L, McIntyre SL, Lindenmayer DB, Parmesan C, Possingham HP, Thomas CD (2008) Assisted colonization and rapid climate change. Science 321:345–346

    Article  CAS  PubMed  Google Scholar 

  30. Holdren CE, Ehrlich PR (1981) Long-range dispersal in checkerspot butterflies: transplant experiments with Euphydryas gillettii. Oecologia 50:125–129

    Article  Google Scholar 

  31. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook LN, Moltschaniwskyj M, Pratchett S, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  32. IPCC (2014) Summary for policymakers. In: Climate change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea, MD, Bilir TE, Chatterjee M, Ebi, KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–32

  33. Johnson CR, Banks SC, Barrett NS, Cazzasus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NJ, Hosie GW, Last PR, Ling SC, Melbourne-Thomas J, Miller K, Pecl GT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd S, Slotwinski A, Swadling KM, Taw N (2011) Climate change cascades: shifts in oceanography, species’ ranges and marine community dynamics in eastern Tasmania. J Mar Exp Biol Ecol 400:17–32

    Article  Google Scholar 

  34. Kirkpatrick M, Peischl S (2013) Evolutionary rescue by beneficial mutations in environments that change in space and time. Philos Trans R Soc B Sci 368(1610):20120082

    Article  Google Scholar 

  35. Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability, chap. 11. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 953–1028

  36. Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Glob Ecol Biogeogr 12:403–410

    Article  Google Scholar 

  37. Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. Ann N Y Acad Sci 1162:79–98

    Article  PubMed  Google Scholar 

  38. Ling SD, Johnson CR, Frusher SD, Ridgway KR (2009) Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc Natl Acad Sci 106(52):22341–22345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mastrandrea MD, Field CB, Stocker TF, Edenhofer O, Ebi KL, Frame DJ, Held H, Kriegler E, Mach KJ, Matschoss PR, Plattner G-K, Yohe GW, Zwiers FW (2010) Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. Intergovernmental panel on climate change (IPCC). http://www.ipcc.ch

  40. Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089

    Article  PubMed  Google Scholar 

  41. McBride CS, Singer MC (2010) Field studies reveal strong postmating isolation between ecologidcally divergent butterfly populations. PLoS Biol 8(10):31000529. doi:10.1371/journal.pbio.1000529

    Article  Google Scholar 

  42. McCoy RC, Garud NR, Kelley JL, Boggs CL, Petrov DA (2014) Genomic inference accurately predicts the timing and severity of a recent bottleneck in a nonmodel insect population. Mol Ecol 23:136–150

    Article  CAS  PubMed  Google Scholar 

  43. McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change hastens population extinctions. Proc Natl Acad Sci 99:6070–6074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Mearns LO, Gutowski W, Jones R, Leung R, McGinnis S, Nunes A, Qian Y (2009) A regional climate change assessment program for North America. Eos Trans Am Geophys Union 90:311–312

  45. Mikheyev AS, Vo T, Wee P-S, Singer MC, Parmesan C (2010) Rapid microsatellite isolation from a butterfly by de novo transcriptome sequencing: performance and a comparison with AFLP-derived distances. PLoS ONE 5:e11212

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mikheyev AS, McBride CS, Mueller UG, Parmesan C, Smee MR, Stefanescu C, Wee B, Singer MC (2013) Host-associated genomic differentiation in congeneric butterflies: now you see it, now you don’t. Mol Ecol 22:4753–4766

    Article  PubMed  Google Scholar 

  47. Miller MP, Pratt GF, Mullins TD, Haig SM (2014) Comparisons of genetic diversity in captive versus wild populations of the federally endangered quino checkerspot butterfly (Euphydryas editha quino Behr; Lepidoptera, Nymphalidae). Proc Entomol Soc Wash 116:80–90

    Article  Google Scholar 

  48. Parmesan C (1996) Climate and species range. Nature 382:765–766

    Article  CAS  Google Scholar 

  49. Parmesan C (2003) Butterflies as bio-indicators of climate change impacts. In: Boggs CL, Watt WB, Ehrlich PR (eds) Evolution and ecology taking flight: butterflies as model systems. University of Chicago Press, Chicago, pp 541–560

    Google Scholar 

  50. Parmesan C (2005) Case study: Euphydryas editha. Special essay. In: Lovejoy T, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven

    Google Scholar 

  51. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–669

    Article  Google Scholar 

  52. Parmesan C, Galbraith G (2004) Observed ecological impacts of climate change in North America. Pew Center on Global Climate Change, Arlington

    Google Scholar 

  53. Parmesan C, Yohe G (2003) Globally coherent fingerprints of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  54. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent J, Thomas JA, Warren M (1999) Poleward shift of butterfly species’ ranges associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  55. Parmesan C, Duarte CM, Poloczanska ES, Richardson AJ, Schoeman DS, Singer MC (2013) Beyond climate change attribution in ecology and conservation research. Ecol Lett Special Issue “The ecological effects of environmental change.” 16(S1):58–71. doi:10.1111/ele.12098

  56. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley L, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Change 3(10):919–925

    Article  Google Scholar 

  57. Pratt GF, Pierce CL (2008) A new larval host plant, Collinsia concolor, for the endangered Quino checkerspot, Euphydryas editha quino. J Lepid Soc 64:36–37

    Google Scholar 

  58. Pratt G, Hein E, Krofta D (2001) Newly discovered populations and food plants extend the range of the endangered Quino checkerspot butterfly, Euphydryas editha quino (Nymphalidae) in southern California. J Lepid Soc 55:169–171

    Google Scholar 

  59. Preston KL, Rotenberry JT, Redak R, Allen MF (2008) Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions. Glob Change Biol 14:2501–2515

    Google Scholar 

  60. Preston K, Redak RA, Allen MF, Rotenberry JT (2012) Changing distribution patterns of an endangered butterfly: linking local extinction patterns and variable habitat relationships. Biol Conserv 152:280–290

    Article  Google Scholar 

  61. Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan EJ, Camacho A, Root TL, Sala OE, Schneider SH, Ashe DM, Clark JR, Early R, Etterson JR, Fielder ED, Gill JL, Minteer BA, Polasky S, Safford HD, Thompson AR, Vellend M (2009) Multi-dimensional evaluation of managed relocation. Proc Natl Acad Sci 106:9721–9724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  63. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–358

    Article  CAS  PubMed  Google Scholar 

  64. Scalercio S, Bonacci T, Mazzei A, Pizzolotto R, Brandmayr P (2014) Better up, worse down: bidirectional consequences of three decades of climate change on a relict population of Erebia cassioides. J Insect Conserv 18:643–650

    Article  Google Scholar 

  65. Schwartz MW, Hellmann JJ, Mclachlan JM, Sax DF, Borevitz JO, Brennan J, Camacho AE, Ceballos G, Clark JR, Doremus H, Early R, Etterson JR, Fielder D, Gill JL, Gonzalez P, Green N, Hannah L, Jamieson DW, Javeline D, Minteer BA, Odenbaugh J, Polasky S, Richardson DM, Root TL, Safford HD, Sala O, Schneider SH, Thompson AR, Williams JW, Vellend M, Vitt P, Zellmer S (2012) Managed relocation: integrating the scientific, regulatory, and ethical challenges. Bioscience 62(8):732–743

    Article  Google Scholar 

  66. Singer MC (1971) Evolution of food-plant preference in the butterfly Euphydryas editha. Evolution 25:383–389

    Article  Google Scholar 

  67. Singer MC (1972) Complex components of habitat suitability within a butterfly colony. Science 176:75–77

    Article  CAS  PubMed  Google Scholar 

  68. Singer MC, McBride CS (2010) Multitrait, host-associated divergence among sets of butterfly populations: implications for reproductive isolation and ecological speciation. Evolution 64(4):921–933

    Article  PubMed  Google Scholar 

  69. Singer MC, McBride CS (2012) Geographic mosaics of species’ association: a definition and an example driven by plant-insect phenological synchrony. Ecology 93:2658–2673

    Article  PubMed  Google Scholar 

  70. Singer MC, Parmesan C (1993) Sources of variation in patterns of plant-insect association. Nature 361:251–253

    Article  Google Scholar 

  71. Singer MC, Parmesan C (2010) Phenological asynchrony between herbivorous insects and their hosts: a naturally-evolved starting point for climate change impacts? Philos Trans R Soc Lond B 365:3161–3176

    Article  Google Scholar 

  72. Singer MC, Ng D, Thomas CD (1988) Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42:977–985

    Article  Google Scholar 

  73. Singer MC, Moore RA, Ng D (1991) Genetic variation in oviposition preference between butterfly populations. J Insect Behav 4:531–535

    Article  Google Scholar 

  74. Singer MC, Vasco DA, Parmesan C, Thomas CD, Ng D (1992) Distinguishing between preference and motivation in food choice: an example from insect oviposition. Anim Behav 44:463–471

    Article  Google Scholar 

  75. Singer MC, Thomas CD, Parmesan C (1993) Rapid human-induced evolution of insect diet. Nature 366:681–683

    Article  Google Scholar 

  76. Thomas CD, Bodsworth EJ, Wilson RJ, Simmons AD, Davies ZG, Musche M, Conradt L (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  CAS  PubMed  Google Scholar 

  77. Thomas CD, Hill JK, Anderson BJ, Bailey S, Beale CM, Bradbury RB, Bulman CR, Crick HQP, Eigenbrod F, Griffiths HM, Kunin WE, Oliver TH, Walmsley CA, Watts K, Worsfold NT, Yardley T (2011) A framework for assessing threats and benefits to species responding to climate change. Methods Ecol Evol 2:125–142

    Article  Google Scholar 

  78. Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  79. [USFWS] United States Fish and Wildlife Service (2003) Recovery plan for the Quino checkerspot butterfly (Euphydryas editha quino). Portland, Oregon, x + 179 pp

  80. [USFWS] United States Fish and Wildlife Service (2008) Endangered and threatened wildlife and plants; revised designation of critical habitat for the Quino checkerspot butterfly (Euphydryas editha quino); proposed rule. Fed Reg 73:3328–3373

    Google Scholar 

  81. [USFWS] United States Fish and Wildlife Service (2009a) Quino checkerspot butterfly (Euphydryas editha quino) 5-year review: summary and evaluation. U.S. Fish and Wildlife Service Carlsbad Fish and Wildlife Office Carlsbad, California

    Google Scholar 

  82. [USFWS] United States Fish and Wildlife Service (2009b) Endangered and threatened wildlife and plants; revised designation of critical habitat for the Quino checkerspot butterfly (Euphydryas editha quino); final rule. Fed Reg 74:28776–28862

    Google Scholar 

  83. Weiss SB, Murphy DD, White RR (1988) Sun, slope and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496

    Article  Google Scholar 

  84. Willis SG, Hill JK, Thomas CD, Roy DB, Fox R, Blakeley DS, Huntley B (2009) Assisted colonization in a changing climate: a test-study using two U.K. butterflies. Conserv Lett 2:45–51

    Article  Google Scholar 

  85. Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species’ ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

  86. Wilson RJ, Gutierrez D, Gutierrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Change Biol 13:1873–1887

    Article  Google Scholar 

Download references

Acknowledgments

We thank the United States Fish and Wildlife Service for compiling Quino records. Modeling was performed at Texas Advanced Computing Center (TACC). We are very grateful to John Fonner at TACC for training MM and for his cheerful help throughout. We also give many thanks to Seth McGinnis at NCAR for providing us with downscaled climate projection data and to Emilie Luciani for converting FWS GIS files for making lovely maps. We thank Dr. Richard Lowry for developing and maintaining the VassarStats website <http://vassarstats.net> that we used to perform the statistics presented in this paper. We also thank the PRISM Climate Group (Oregon State University, http://prism.oregonstate.edu) and the WorldClim Global Climate Data group (http://www.worldclim.org) for making their high resolution interpolated climate data freely available for research purposes. Personal observations by Paul Opler, Gordon Pratt, John Emmel and Ken Osborne were invaluable. We also thank two anonymous reviewers for their very helpful suggestions that have substantially improved the manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service. Support came from the San Diego Foundation, the Okinawa Institute for Science and Technology (Japan) and from NSF Earth Systems Models Grant, Award Number 1049208.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Camille Parmesan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 169 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parmesan, C., Williams-Anderson, A., Moskwik, M. et al. Endangered Quino checkerspot butterfly and climate change: Short-term success but long-term vulnerability?. J Insect Conserv 19, 185–204 (2015). https://doi.org/10.1007/s10841-014-9743-4

Download citation

Keywords

  • Assisted colonization
  • Climate change
  • Global warming
  • Critical Habitat
  • Endangered Species Act
  • Euphydryas editha quino