Journal of Insect Conservation

, Volume 19, Issue 1, pp 33–43 | Cite as

Species conservation under future climate change: the case of Bombusbellicosus, a potentially threatened South American bumblebee species

  • Aline C. Martins
  • Daniel P. Silva
  • Paulo De MarcoJr.
  • Gabriel A. R. Melo
ORIGINAL PAPER

Abstract

Bees ensure 35 % of global food production, but this service is endangered due to several threats. Declines in bumblebee populations (genus Bombus) have been reported worldwide. Bombusbellicosus is one of the rare cases of reported threatened bumblebees in South America. It was once widespread in southern Brazil’s grasslands until the 1960s. During that time, that area underwent increasing land use which led to a decrease in bee abundance and richness, and to local disappearance of B.bellicosus. Climate change is also believed to cause declines in the abundance of B.bellicosus. Here we used species distribution models to assess potential effects of climate changes on the distribution of B.bellicosus in southern Brazil, considering both current and future climate scenarios. Our results show that the suitable climatic conditions for B.bellicosus will retreat southwards. A wax cover inside its nests is usually related to Bombus species inhabiting cooler climates. This cover enables the maintenance of higher temperatures inside the nest and may be deleterious for the species under future warmer climates. Continuously growing land use is the second major threat to this pollinator. The results presented here may eventually provide theoretical grounds and enable practical conservation actions for B.bellicosus protection in South America, especially given the potential adverse effects of climate changes for this species.

Keywords

Species distribution modelling Bumblebee Pollinator Climate change South America Grasslands 

Supplementary material

10841_2014_9740_MOESM1_ESM.docx (371 kb)
Supplementary material 1 (DOCX 370 kb)

References

  1. Abrahamovich AH, Díaz NB, Morrone JJ (2004) Distributional patterns of the Neotropical and andean species of the genus Bombus (Hymenoptera: Apidae). Acta Zool Mex 20:99–117Google Scholar
  2. Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918CrossRefPubMedGoogle Scholar
  3. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  4. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47CrossRefPubMedGoogle Scholar
  5. Arbulo N, Santos E, Salvarrey S, Invernizzi C (2011) Proboscis length and resource utilization in two uruguayan bumblebees: Bombus atratus Franklin and Bombus bellicosus (Hymenoptera: Apidae). Neotrop Entomol 40:72–77CrossRefPubMedGoogle Scholar
  6. Ascher JS, Pickering J (2014) Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species
  7. Banaszak-Cibicka W, Żmihorski M (2011) Wild bees along an urban gradient: winners and losers. J Insect Conserv 16:331–343CrossRefGoogle Scholar
  8. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  9. Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423CrossRefGoogle Scholar
  10. Bartomeus I, Ascher JS, Wagner D et al (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci USA 108:20645–206459CrossRefPubMedCentralPubMedGoogle Scholar
  11. Bartomeus I, Ascher JS, Gibbs J et al (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc Natl Acad Sci USA 110:4656–4660CrossRefPubMedCentralPubMedGoogle Scholar
  12. Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354CrossRefPubMedGoogle Scholar
  13. Bommarco R, Lundin O, Smith HG et al (2012) Drastic historic shifts in bumble-bee community composition in Sweden. Proc R Soc B Biol Sci 279:309–315CrossRefGoogle Scholar
  14. Bridle JR, Vines TH (2007) Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol 22:140–147CrossRefPubMedGoogle Scholar
  15. Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655CrossRefGoogle Scholar
  16. Chapman RE, Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol Lett 4:650–662CrossRefGoogle Scholar
  17. Chown SL, Terblanche JS (2006) Physiological diversity in insects: ecological and evolutionary contexts. Adv In Insect Phys 33:50–152CrossRefPubMedCentralPubMedGoogle Scholar
  18. Colla SR, Gadallah F, Richardson L et al (2012) Assessing declines of North American bumble bees Bombus spp. using museum specimens. Biodivers Conserv 21:3585–3595CrossRefGoogle Scholar
  19. Colombo AF, Joly CA (2010) Brazilian Atlantic forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70:697–708CrossRefPubMedGoogle Scholar
  20. Diniz-Filho AF, Bini LM, Rangel TF et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906CrossRefGoogle Scholar
  21. Diniz-Filho JAF, De Marco Jr P, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179Google Scholar
  22. Durant JM, Hjermann DØ, Ottersen G, Stenseth NC (2007) Climate and the match or mismatch between predator requirements and resource availability. Clim Res 33:271–283CrossRefGoogle Scholar
  23. Ellis JS, Knight ME, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386Google Scholar
  24. Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modelling with special emphasis on the Mahalanobis distance. Ecol Modell 160:115–130CrossRefGoogle Scholar
  25. Ferro VG, Lemes P, Melo AS, Loyola R (2014) The reduced effectiveness of protected areas under climate change threatens atlantic forest tiger moths. PLoS One 9:e107792. doi:10.1371/journal.pone.0107792 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Fitzpatrick U, Murray TE, Paxton RJ, Breen J, Cotton D, Santorum V, Brown MJF (2006) Rarity and decline in bumblebees – A test of causes and correlates in the Irish fauna. Biol Conserv 136:1–10Google Scholar
  27. Garratt MPD, Coston DJ, Truslove CL et al (2014) The identity of crop pollinators helps target conservation for improved ecosystem services. Biol Conserv 169:128–135CrossRefPubMedCentralPubMedGoogle Scholar
  28. Giannini TC, Acosta AL, Garófalo CA et al (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Modell 244:127–131CrossRefGoogle Scholar
  29. Google Inc. (2013) Google Earth. version 7.0.3.8542Google Scholar
  30. Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26CrossRefGoogle Scholar
  31. Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumble bees. Annu Rev Entomol 53:191–208CrossRefPubMedGoogle Scholar
  32. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186CrossRefGoogle Scholar
  33. Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435CrossRefPubMedCentralPubMedGoogle Scholar
  34. Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Front Ecol Environ 5:131–138CrossRefGoogle Scholar
  35. Hegland SJ, Nielsen A, Lázaro A et al (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195CrossRefPubMedGoogle Scholar
  36. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32CrossRefGoogle Scholar
  37. Herrera JM, Ploquin EF, Rodríguez-Pérez J, Obeso JR (2014) Determining habitat suitability for bumblebees in a mountain system: a baseline approach for testing the impact of climate change on the occurrence and abundance of species. J Biogeogr 41:700–712CrossRefGoogle Scholar
  38. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  39. Hines HM, Cameron SA, Deans AR (2007) Nest architecture and foraging behavior in Bombus pullatus (Hymenoptera: Apidae), with comparisons to other tropical bumble bees. J Kans Entomol Soc 80:1–15CrossRefGoogle Scholar
  40. Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227CrossRefPubMedGoogle Scholar
  41. Jiménez-Valverde A, Peterson AT, Soberón J et al (2011) Use of niche models in invasive species risk assessments. Biol Invasion 13:2785–2797CrossRefGoogle Scholar
  42. Kamino LHY, Stehmann JR, Amaral S et al (2011) Challenges and perspectives for species distribution modelling in the neotropics. Biol Lett 8:324–326CrossRefPubMedCentralPubMedGoogle Scholar
  43. Kearney M (2006) Habitat, environment and niche: What are we modelling? Oikos 1115:186–191CrossRefGoogle Scholar
  44. Klatt BK, Holzschuh A, Westphal C et al (2014) Bee pollination improves crop quality, shelf life and commercial value. Proc R Soc B Biol Sci 281:20132440Google Scholar
  45. Klein A-M, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc B Biol Sci 270:955–961CrossRefGoogle Scholar
  46. Kremen C, Williams NM, Aizen MA et al (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314CrossRefPubMedGoogle Scholar
  47. Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS One 8:e54323. doi:10.1371/journal.pone.0054323 CrossRefPubMedCentralPubMedGoogle Scholar
  48. Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  49. Loyola RD, Lemes P, Faleiro FV et al (2012) Severe loss of suitable climatic conditions for marsupial species in Brazil: challenges and opportunities for conservation. PLoS One 7: e46257. doi:10.1371/journal.pone.0046257 PubMedCentralPubMedGoogle Scholar
  50. Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69CrossRefGoogle Scholar
  51. Martins AC, Melo GAR (2009) Has the bumblebee Bombus bellicosus gone extinct in the northern portion of its distribution range in Brazil? J Insect Conserv 14:207–210CrossRefGoogle Scholar
  52. Martins AC, Gonçalves RB, Melo GAR (2013) Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zoologia 30:157–176CrossRefGoogle Scholar
  53. MEA. (2005) Millenium Ecosystem Assessment. Ecosystems and Human well-being: Scenarios - Millenium Ecosystem Assessment—Drivers of Ecosystem Change, vol 1. Island Press, Washington, DC, pp 74–76Google Scholar
  54. Michener CD (2007) The Bees of the World, 2nd ed. : p 992Google Scholar
  55. Morales CL, Arbetman MP, Cameron SA, Aizen MA (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ 11:529–534CrossRefGoogle Scholar
  56. Moure JS, Sakagami SF (1962) As mamangabas sociais do Brasil (Bombus, Latreille) (Hymenoptera, Apoidea). Stud Entomol 5:65–194Google Scholar
  57. Muñoz MES, De Giovanni R, de Siqueira MF et al (2011) openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica 15:111–135CrossRefGoogle Scholar
  58. Nóbrega CC, De Marco P Jr (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505CrossRefGoogle Scholar
  59. Overbeck G, Muller S, Fidelis A et al (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol Evol Syst 9:101–116CrossRefGoogle Scholar
  60. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  61. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  62. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  63. Phillips SJ, Dudik M (2008) Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  64. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259CrossRefGoogle Scholar
  65. Polak M, Tomkins JL (2013) Developmental selection against developmental instability: a direct demonstration. Biol Lett 9:20121081CrossRefPubMedCentralPubMedGoogle Scholar
  66. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefPubMedGoogle Scholar
  67. Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126CrossRefGoogle Scholar
  68. Rocchini D, Hortal J, Lengyel S et al (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226CrossRefGoogle Scholar
  69. Rodrigues ASL, Andelman SJ, Bakarr MI et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643CrossRefPubMedGoogle Scholar
  70. Root TL, Price JT, Hall KR, Schneider SH (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60Google Scholar
  71. Sakagami SF, Laroca S (1971) Relative abundance, phenology and flower visits of apid bees in eastern Paraná, Southern Brazil (Hymenoptera, Apidae). Kontyû 39:217–230Google Scholar
  72. Sakagami SF, Akahira Y, Zucchi R (1967a) Nest architeture and brood development in a neotropical bumblebee, Bombus atratus. Insectes Soc 14:389–413CrossRefGoogle Scholar
  73. Sakagami SF, Laroca S, Moure JS (1967b) Wild bee biocenotics in São José dos Pinhais (PR), South Brazil, Preliminary Report. J Fac Sci Hokkaido Univ Ser VI, Zool 16:253–291Google Scholar
  74. Saraiva AM, Acosta AL, Giannini TC et al (2013) Bombus terrestris na América do Sul: possíveis rotas de invasão deste polinizador exótico até o Brasil. polinizadores do bras contrib e perspect para biodiversidade, uso sustentável, conserv e serviços ambientGoogle Scholar
  75. Schölkopf B, Platt JC, Shawe-Taylor J et al (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471CrossRefPubMedGoogle Scholar
  76. Schweiger O, Heikkinen RK, Harpke A et al (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob Ecol Biogeogr 21:88–99CrossRefGoogle Scholar
  77. Serra BDV, De Marco PJ, Nóbrega CC, Campos LAO (2012) Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, Apidae): conserving isolated populations in mountain habitats. Nat Conserv 10:199–206CrossRefGoogle Scholar
  78. Silva DP, Aguiar AJC, Melo GAR et al (2013) Amazonian species within the cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini). Apidologie 44:673–683CrossRefGoogle Scholar
  79. Silva DP, Gonzalez VH, Melo GAR et al (2014) Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol Modell 273:200–209CrossRefGoogle Scholar
  80. Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652CrossRefPubMedGoogle Scholar
  81. Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13CrossRefGoogle Scholar
  82. Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66CrossRefGoogle Scholar
  83. Thompson HM (2001) Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32:305–321CrossRefGoogle Scholar
  84. Thomson D (2004) Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85:458–470CrossRefGoogle Scholar
  85. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B Biol Sci 270:467–473CrossRefGoogle Scholar
  86. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363CrossRefPubMedGoogle Scholar
  87. Varela G (1992a) Nota preliminar sobre la fenologia del nido de Bombus bellicosus Smith, 1879 (Hymenoptera, Apoidea). Bol Soc Zool Uruguay 7:53–54Google Scholar
  88. Varela G (1992b) Nota preliminar sobre los componentes de un nido de Bombus bellicosus Smith, 1879 (Hymenoptera, Apoidea). Bol Soc Zool Uruguay 7:55–56Google Scholar
  89. Walther G, Post E, Convey P et al (2002) Ecological responses to recent climatic change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  90. Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352CrossRefPubMedGoogle Scholar
  91. Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23CrossRefGoogle Scholar
  92. Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387CrossRefGoogle Scholar
  93. Williams PH, Araújo MB, Rasmont P (2007) Can vulnerability among British bumblebee (Bombus) species be explained by niche position and breadth? Biol Conserv 138:493–505CrossRefGoogle Scholar
  94. Williams P, Colla S, Xie Z (2009) Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv Biol 23:931–940CrossRefPubMedGoogle Scholar
  95. Williams NM, Crone EE, Roulston T et al (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol Conserv 143:2280–2291CrossRefGoogle Scholar
  96. Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223CrossRefPubMedGoogle Scholar
  97. Winfree R, Aguilar R, Vásquez DP et al (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076CrossRefPubMedGoogle Scholar
  98. WWF (2013) Tropical and subtropical grasslands, savannas and shrublands: Southeastern South America: Uruguay, Brazil, and Argentina. http://worldwildlife.org/ecoregions/nt0710. Accessed 4 Feb 2013

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aline C. Martins
    • 1
  • Daniel P. Silva
    • 2
  • Paulo De MarcoJr.
    • 3
  • Gabriel A. R. Melo
    • 1
  1. 1.Laboratório de Biologia Comparada de Hymenoptera, Departamento de ZoologiaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
  3. 3.Theory, Metapopulation and Landscape Lab, Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade Federal de Goiás Campus IIGoiâniaBrazil

Personalised recommendations