Journal of Insect Conservation

, Volume 18, Issue 6, pp 1137–1145 | Cite as

Influence of habitat and landscape on butterfly diversity of semi-natural meadows within forest-dominated landscapes

  • Ave LiivamägiEmail author
  • Valdo Kuusemets
  • Tanel Kaart
  • Jaan Luig
  • Isabel Diaz-Forero


This study investigates how butterfly communities are influenced by habitat and landscape factors in forest-dominated landscapes. The abundance and species richness of butterflies were determined in 22 semi-natural meadows located in north-eastern Estonia. A correlation analysis, partial least squares analysis and stepwise forward-selection multiple regression analysis were applied for habitat parameters and the surrounding landscape at four spatial scales, i.e., 250, 500, 1,000 and 2,000 m radius. We found a positive correlation between the proportion of forest and total butterfly species richness at a 250 m radius scale. Contrary to expectation, the amount of meadow area in the surrounding landscape negatively influenced butterfly species richness and abundance. Our results emphasise the importance of both the surrounding landscape and habitat characteristics for butterfly species richness. Because butterfly communities are composed of individual species with different habitat requirements, diverse habitats and landscape configurations should be applied in insect conservation and management.


Lepidoptera Species richness Patch quality Land cover types Landscape indices Heterogeneity 



This research was funded by targeted financing from the Estonian Ministry of Education and Research (SF1090050s07), by an applied research project of the Estonian Ministry of Agriculture (T8014PKPK) and by the EU Regional Development Foundation, Environmental Conservation and Environmental Technology R&D Programme Project EDULOOD (3.2.0802.11-0043). We would like to thank anonymous reviewers for their useful comments that greatly improved the manuscript.


  1. Benton BT, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  2. Bergman KO, Askling J, Ekberg O, Ignell H, Wahlman H, Milberg P (2004) Landscape effects on butterfly assemblages in an agricultural region. Ecography 27:619–628CrossRefGoogle Scholar
  3. Bergman KO, Ask L, Askling J, Ignell H, Wahlman H, Milberg P (2008) Importance of boreal grasslands in Sweden for butterfly diversity and effects of local and landscape habitat factors. Biodivers Conserv 17:139–153CrossRefGoogle Scholar
  4. Brückmann SV, Krauss J, Steffan-Dewenter I (2010) Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. J Appl Ecol 47:799–809CrossRefGoogle Scholar
  5. Cozzi G, Müller CB, Krauss J (2008) How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands? Landsc Ecol 23:269–283CrossRefGoogle Scholar
  6. Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agr Ecosyst Environ 98:321–329CrossRefGoogle Scholar
  7. Davis JD, Debinski DM, Danielson BJ (2007) Local and landscape effects on the butterfly community in fragmented Midwest USA prairie habitats. Landsc Ecol 22:1341–1354CrossRefGoogle Scholar
  8. Debinski DM, Ray C, Saveraid EH (2001) Species diversity and the scale of the landscape mosaic: do scale of movement and patch size affect diversity? Biol Conserv 98:179–190CrossRefGoogle Scholar
  9. Dennis RLH (2004) Butterfly habitats, broad-scale biotope applications, and structural exploitation of vegetation at finer scales: the matrix revisited. Ecol Entomol 29:744–752CrossRefGoogle Scholar
  10. Diaz-Forero I, Kuusemets V, Mänd M, Liivamägi A, Kaart T, Luig J (2013) Influence of local and landscape factors on bumblebees in semi-natural meadows: a multiple-scale study in a forested landscape. J Insect Conserv 17:113–125CrossRefGoogle Scholar
  11. Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13:3–27CrossRefGoogle Scholar
  12. Eiden G, Kayadjanian M, Vidal C (2000) Capturing landscape structures: tools. The European Commission. Accessed 11 March 2013
  13. Ekroos J, Heliölä J, Kuussaari M (2010) Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J Appl Ecol 47:459–467CrossRefGoogle Scholar
  14. Emanuelsson U (2008) Semi-natural grasslands in Europe today. Grassl Sci Eur 13:3–8Google Scholar
  15. Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74CrossRefGoogle Scholar
  16. Fauna Europaea (2013) Fauna Europaea version 2.6.2. Accessed 22 Oct 2013
  17. Goulson D, Hanley ME, Darvill B, Ellis JS (2006) Biotope associations and the decline of bumblebees (Bombus spp.). J Insect Conserv 10:95–103CrossRefGoogle Scholar
  18. Jonason D, Milberg P, Bergman KO (2010) Monitoring of butterflies within a landscape context in south-eastern Sweden. J Nat Conserv 18:22–33CrossRefGoogle Scholar
  19. Krämer B, Poniatowski D, Fartmann T (2012) Effects of landscape and habitat quality on butterfly communities in pre-alpine calcareous grasslands. Biol Conserv 152:253–261CrossRefGoogle Scholar
  20. Krauss J, Steffan-Dewenter I, Tscharntke T (2003) How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30:889–900CrossRefGoogle Scholar
  21. Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kukk T, Sammul M (2006) Area of semi-natural Natura 2000 habitat types in Estonia. Year-B Estonian Nat Soc 84:114–159Google Scholar
  23. Kumar S, Simonson SE, Stohlgren TJ (2009) Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA. Biodivers Conserv 18:739–763CrossRefGoogle Scholar
  24. Kuussaari M, Heliölä J, Luoto M, Pöyry J (2007a) Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agric Ecosyst Environ 122:366–376CrossRefGoogle Scholar
  25. Kuussaari M, Heliölä J, Pöyry J, Saarinen K (2007b) Contrasting trends of butterfly species preferring semi-natural grasslands, field margins and forest edges in northern Europe. J Insect Conserv 11:351–366CrossRefGoogle Scholar
  26. Luoto M, Rekolainen S, Aakkula J, Pykälä J (2003) Loss of plant species richness and habitat connectivity in grasslands associated with agricultural change in Finland. Ambio 32:447–452PubMedGoogle Scholar
  27. Maes D, Titeux N, Hortal J, Anselin A, Decleer K, De Knijf G, Fichefet V, Luoto M (2010) Predicted insect diversity declines under climate change in an already impoverished region. J Insect Conserv 14:485–498CrossRefGoogle Scholar
  28. Marini L, Fontana P, Battisti A, Gaston KJ (2009) Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland–forest mosaic: a multi-scale approach. Insect Conserv Divers 2:213–220CrossRefGoogle Scholar
  29. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS, spatial pattern analysis program for categorical maps. University of Massachusetts, AmherstGoogle Scholar
  30. Merckx T, Van Dongen S, Matthysen E, Van Dyck H (2008) Thermal flight budget of a woodland butterfly in woodland versus agricultural landscapes: an experimental assessment. Basic Appl Ecol 9:433–442CrossRefGoogle Scholar
  31. Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547PubMedCrossRefGoogle Scholar
  32. Öckinger E, Smith HG (2006) Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526–534PubMedCrossRefGoogle Scholar
  33. Öckinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59CrossRefGoogle Scholar
  34. Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979PubMedGoogle Scholar
  35. Öckinger E, Lindborg R, Sjödin NE, Bommarco R (2012) Landscape matrix modifies richness of plants and insects in grassland fragments. Ecography 35:259–267CrossRefGoogle Scholar
  36. Ouin A, Burel F (2002) Influence of herbaceous elements on butterfly diversity in hedgerow agricultural landscapes. Agric Ecosyst Environ 93:45–53CrossRefGoogle Scholar
  37. Ouin A, Aviron S, Dover J, Burel F (2004) Complementation/supplementation of resources for butterflies in agricultural landscapes. Agric Ecosyst Environ 103:473–479CrossRefGoogle Scholar
  38. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–669CrossRefGoogle Scholar
  39. Pywell RF, Warman EA, Sparks TH, Greatorex-Davies JN, Walker KJ, Meek WR, Carvell C, Petit S, Firbank LG (2004) Assessing habitat quality for butterflies on intensively managed arable farmland. Biol Conserv 118:313–325CrossRefGoogle Scholar
  40. Rossi JP, van Halder I (2010) Towards indicators of butterfly biodiversity based on a multiscale landscape description. Ecol Indic 10:452–458CrossRefGoogle Scholar
  41. Shreeve TG, Dennis RLH (2011) Landscape scale conservation: resources, behaviour, the matrix and opportunities. J Insect Conserv 15:178–188CrossRefGoogle Scholar
  42. Sjödin NE, Bengtsson J, Ekbom B (2008) The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. J Appl Ecol 45:763–772CrossRefGoogle Scholar
  43. Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3:449–456CrossRefGoogle Scholar
  44. Stewart KEJ, Bourn NAD, Thomas JA (2001) An evaluation of three quick methods commonly used to assess sward height in ecology. J Appl Ecol 38:1148–1154CrossRefGoogle Scholar
  45. Stoate C, Boatman ND, Borrahlon RJ, Carvalho CR, de Snoo GR, Eden P (2002) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365CrossRefGoogle Scholar
  46. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc B-Biol Sci 268:1791–1796CrossRefGoogle Scholar
  47. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  48. van Swaay C, Warren M, Lois G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209CrossRefGoogle Scholar
  49. van Swaay CAM, van Strien AJ, Harpke A, Fontaine B, Stefanescu C, Roy D, Maes D, Kühn E, Õunap E, Regan E, Švitra G, Prokofev I, Heliölä J, Settele J, Pettersson L, Botham L, Musche M, Titeux N, Cornish N, Leopold P, Julliard R, Verovnik R, Öberg S, Popov S, Collins S, Goloshchapova S, Roth T, Brereton T, Warren M (2013) The European grassland butterfly indicator: 1990–2011. European Environment Agency, CopenhagenGoogle Scholar
  50. Weibull AC, Östman Ö (2003) Species composition in agroecosystems: the effect of landscape, habitat, and farm management. Basic Appl Ecol 4:349–361CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ave Liivamägi
    • 1
    Email author
  • Valdo Kuusemets
    • 1
  • Tanel Kaart
    • 2
  • Jaan Luig
    • 1
  • Isabel Diaz-Forero
    • 1
  1. 1.Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
  2. 2.Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia

Personalised recommendations