Journal of Insect Conservation

, Volume 18, Issue 5, pp 965–979 | Cite as

When habitat management can be a bad thing: effects of habitat quality, isolation and climate on a declining grassland butterfly

  • Gregor Stuhldreher
  • Thomas Fartmann


The conservation of most temperate grassland habitats and their characteristic fauna and flora requires regular low-intensive forms of land-use to counteract natural succession. Although many species tolerate moderate disturbance regimes, some are known to be susceptible to grazing or mowing, thereby causing a management dilemma. One of these species is the Woodland Ringlet butterfly, Erebia medusa. In this study, we analysed which environmental factors determine the occurrence of E. medusa in the Diemel Valley (Central Germany). Furthermore, we conducted microclimatic measurements during the winter months to investigate the role of the litter layer as a microclimatic buffer. Patch occupancy in the Diemel Valley was well explained by the amount of litter present in a patch and connectivity to other inhabited patches. The role of local climatic conditions could not be clarified, due to inter-correlations with connectivity. During the winter, the air temperature inside the litter layer was significantly less variable than above it. We conclude that the current distribution of E. medusa in the Diemel Valley is caused by the combined effect of habitat quality and connectivity, and perhaps also by climatic factors. The importance of the litter layer reflects the dependence of E. medusa on low-intensive or absent land-use. In addition, the litter layer possibly constitutes an essential habitat element, as it buffers temperature fluctuations and thus probably reduces the energy consumption of overwintering larvae. Given the species’ preference for abandoned grasslands, the conservation of E. medusa requires a low-intensity habitat management, for example, by rotational grazing or mowing of small parts of the sites. On the landscape level, the preservation of well-connected habitat networks is important.


Connectivity Erebia medusa Global change Litter Microclimatic buffer Range retraction Vegetation structure 



We would like to thank Gabriel Hermann for information on the habitats and population trends of E. medusa in South-west Germany. We are very grateful to Jan Thiele (Institute of Landscape Ecology, University of Münster) for statistical advice. Benjamin Gräler (Institute for Geoinformatics, University of Münster) helped to write the R script for the model validation procedure. Two anonymous referees made valuable comments on an earlier version of the manuscript. This work was funded by a Ph.D. scholarship of the Deutsche Bundesstiftung Umwelt (DBU).


  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure—the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7(3):175–185. doi: 10.1023/a:1027330422958 CrossRefGoogle Scholar
  2. Balmer O, Erhardt A (2000) Consequences of succession on extensively grazed grasslands for Central European butterfly communities: rethinking conservation practices. Conserv Biol 14(3):746–757. doi: 10.1046/j.1523-1739.2000.98612.x CrossRefGoogle Scholar
  3. Bolz R, Geyer A (2003) Rote Liste gefährdeter Tagfalter (Lepidoptera: Rhopalocera) Bayerns. In: Landesamt für Umweltschutz (ed) Rote Liste gefährdeter Tiere Bayerns. Schriftenreihe des Bayerischen Landesamtes für Umweltschutz, pp 217–222Google Scholar
  4. Bräu M, Dolek M (2013) Wald-Wiesenvögelchen Coenonympha hero (Linneaus, 1758). In: Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 504–506Google Scholar
  5. Bräu M, Dolek M, Stettmer C (2010) Habitat requirements, larval development and food preferences of the German population of the False Ringlet Coenonympha oedippus (Fabricius, 1787) (Lepidoptera: Nymphalidae)—research on the ecological needs to develop management tools. Oedippus 26:41–51Google Scholar
  6. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45(2):90–96. doi: 10.2307/2684366 Google Scholar
  7. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46. doi: 10.1177/001316446002000104 CrossRefGoogle Scholar
  8. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58. doi: 10.1126/science.1200303 PubMedCrossRefGoogle Scholar
  9. Dennis RLH (2010) A resource-based habitat view for conservation: butterflies in the British landscape. Wiley, OxfordCrossRefGoogle Scholar
  10. Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Muller, 1764) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1(3):167–176. doi: 10.1023/a:1018455714879 CrossRefGoogle Scholar
  11. Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102(2):417–426CrossRefGoogle Scholar
  12. Dover JW, Rescia A, Fungarino S, Fairburn J, Carey P, Lunt P, Dennis RLH, Dover CJ (2010) Can hay harvesting detrimentally affect adult butterfly abundance? J Insect Conserv 14(4):413–418. doi: 10.1007/s10841-010-9267-5 CrossRefGoogle Scholar
  13. Dover JW, Spencer S, Collins S, Hadjigeorgiou I, Rescia A (2011) Grassland butterflies and low intensity farming in Europe. J Insect Conserv 15(1–2):129–137. doi: 10.1007/s10841-010-9332-0 CrossRefGoogle Scholar
  14. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 2, Tagfalter II, vol 2. Eugen Ulmer, StuttgartGoogle Scholar
  15. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12(6):677–688. doi: 10.1007/s10841-007-9110-9 CrossRefGoogle Scholar
  16. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6th edn. Eugen Ulmer, StuttgartGoogle Scholar
  17. Erhardt A, Thomas JA (1991) Lepidoptera as indicators of change in the semi-natural grasslands of lowland and upland Europe. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 213–236CrossRefGoogle Scholar
  18. Fartmann T (2004). Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales—Biozönologie von Tagfaltern und Widderchen in einer alten Hudelandschaft. Abhandlungen aus dem Westfälischen Museum für Naturkunde, vol 66(1) Münster, pp 1–256Google Scholar
  19. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43(4):335–347Google Scholar
  20. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde, vol 68(3/4), Münster, pp 11–57Google Scholar
  21. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. doi: 10.1017/s0376892997000088 CrossRefGoogle Scholar
  22. Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217(1–2):48–58. doi: 10.1016/j.ecolmodel.2008.05.015 CrossRefGoogle Scholar
  23. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42Google Scholar
  24. Giraudoux P (2013) pgirmess: data analysis in ecology. R package version 1(5):7Google Scholar
  25. Goffart P, Schtickzelle N, Turlure C (2010) Conservation and management of the habitats of two relict butterflies in the Belgian Ardenne: Proclossiana eunomia and Lycaena helle. In: Habel JC, Assmann T (eds) Relict species—phylogeography and conservation biology. Springer, Heidelberg, pp 357–370. doi: 10.1007/978-3-540-92160-8 Google Scholar
  26. Hanski I (1998) Metapopulation dynamics. Nature 396(6706):41–49. doi: 10.1038/23876 CrossRefGoogle Scholar
  27. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  28. Heikkinen RK, Luoto M, Kuussaari M, Poyry J (2005) New insights into butterfly–environment relationships using partitioning methods. Proc R Soc B-Biol Sci 272(1577):2203–2210. doi: 10.1098/rspb.2005.3212 CrossRefGoogle Scholar
  29. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New YorkCrossRefGoogle Scholar
  30. IVM (Institute for Environmental Studies) (2013) Agricultural land use intensity data. Accessed 01.12.2013
  31. Johst K, Drechsler M, Thomas J, Settele J (2006) Influence of mowing on the persistence of two endangered large blue butterfly species. J Appl Ecol 43(2):333–342. doi: 10.1111/j.1365-2664.2006.01125.x CrossRefGoogle Scholar
  32. Konvicka M, Benes J, Cizek O, Kopecek F, Konvicka O, Vitaz L (2008) How too much care kills species: grassland reserves, agri-environmental schemes and extinction of Colias myrmidone (Lepidoptera: Pieridae) from its former stronghold. J Insect Conserv 12(5):519–525. doi: 10.1007/s10841-007-9092-7 CrossRefGoogle Scholar
  33. Krähenmann S, Bissolli P, Rapp J, Ahrens B (2011) Spatial gridding of daily maximum and minimum temperatures in Europe. Meteorol Atmos Phys 114(3–4):151–161. doi: 10.1007/s00703-011-0160-x CrossRefGoogle Scholar
  34. Landis JR, Koch GG (1977) Measurement of observer agreement for categorical data. Biometrics 33(1):159–174. doi: 10.2307/2529310 PubMedCrossRefGoogle Scholar
  35. Leopold P (2006) Die Larvalökologie des Waldteufels (Erebia aethiops) in Nordrhein-Westfalen und deren Bedeutung für den Erhalt der Art. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abhandlungen aus dem Westfälischen Museum für Naturkunde, vol 68(3/4), Münster, pp 61–82Google Scholar
  36. Lobenstein U (2003) Die Schmetterlingsfauna des mittleren Niedersachsens. HannoverGoogle Scholar
  37. MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Lazpita JG, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59(1):47–69. doi: 10.1006/jema.1999.0335 CrossRefGoogle Scholar
  38. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13(4):603–606. doi: 10.1111/j.1654-1103.2002.tb02087.x CrossRefGoogle Scholar
  39. Menard S (2000) Coefficients of determination for multiple logistic regression analysis. Am Stat 54(1):17–24. doi: 10.2307/2685605 Google Scholar
  40. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83(4):1131–1145. doi: 10.2307/3071919 CrossRefGoogle Scholar
  41. Möllenbeck V, Hermann G, Fartmann T (2009) Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J Insect Conserv 13(1):77–87. doi: 10.1007/s10841-007-9128-z CrossRefGoogle Scholar
  42. Müller-Wille W (1981) Westfalen. Landschaftliche Ordnung und Bindung eines Landes (2. Aufl.). Aschendorfsche Verlagsbuchhandlung, MünsterGoogle Scholar
  43. Munguira ML, García-Barros E, Martín Cano J (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54Google Scholar
  44. Örvössy N, Kõrösi Á, Batáry P, Vozár Á, Peregovits L (2013) Potential metapopulation structure and the effects of habitat quality on population size of the endangered False Ringlet butterfly. J Insect Conserv 17(3):537–547. doi: 10.1007/s10841-012-9538-4 CrossRefGoogle Scholar
  45. Pähler R, Dudler H (2010) Die Schmetterlingsfauna von Ostwestfalen-Lippe und angrenzender Gebiete in Nordhessen und Südniedersachsen. Eigenverlag, VerlGoogle Scholar
  46. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42. doi: 10.1038/nature01286 PubMedCrossRefGoogle Scholar
  47. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  48. Reinhardt R, Bolz R (2011). Rote Liste und Gesamtartenliste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea) Deutschlands – Bearbeitungsstand: 4. Fassung. Naturschutz und Biologische Vielfalt, vol 3 Bonn - Bad GodesbergGoogle Scholar
  49. Reinhardt R, Sbieschne H, Settele J, Fischer U, Fiedler G (2007) Tagfalter von Sachsen. Beiträge zur Insektenfauna Sachsens, Band 6. Bernhard Klausnitzer, DresdenGoogle Scholar
  50. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Mueller M (2011) pROC: an open-source package for R and S plus to analyze and compare ROC curves. BMC Bioinform 12(1):77. doi: 10.1186/1471-2105-12-77 CrossRefGoogle Scholar
  51. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39(1):157–176. doi: 10.1046/j.1365-2664.2002.00695.x CrossRefGoogle Scholar
  52. Ruel JJ, Ayres MP (1999) Jensen’s inequality predicts effects of environmental variation. Trends Ecol Evol 14(9):361–366. doi: 10.1016/s0169-5347(99)01664-x PubMedCrossRefGoogle Scholar
  53. Schmitt T (1993) Biotopansprüche von Erebia medusa brigobanna FRÜHSTORFER, 1917 (Rundaugen-Mohrenfalter) im Nordsaarland (Lepidoptera, Nymphalidae, Satyrinae). Atalanta 24:33–56Google Scholar
  54. Schmitt T, Varga Z, Seitz A (2000) Forests as dispersal barriers for Erebia medusa (Nymphalidae, Lepidoptera). Basic Appl Ecol 1(1):53–59. doi: 10.1078/1439-1791-00008 CrossRefGoogle Scholar
  55. Schraml E, Fartmann T (2013) Frühlings-Mohrenfalter Erebia medusa ([Denis & Schiffermüller], 1775). In: Bräu M, Bolz R, Kolbeck H, Nummer A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 504–506Google Scholar
  56. Schröder B (2006) Software ROC/AUC-calculation. Evaluating the predictive performance of species distribution models (computer program). Accessed 01.09.2013
  57. Schröder B, Strauss B, Biedermann R, Binzenhoefer B, Settele J (2009) Predictive species distribution modelling in butterflies. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 62–77Google Scholar
  58. Schtickzelle N, Baguette M (2009) (Meta)population viability analysis: a crystal ball for the conservation of endangered butterflies? In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 339–352Google Scholar
  59. Schulte T, Eller O, Niehuis M, Rennwald E (2007) Die Tagfalter der Pfalz, vol Beiheft 37. Fauna und Flor in Rheinland-Pfalz. GNOR-Eigenverlag, LandauGoogle Scholar
  60. Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31(10):1555–1568. doi: 10.1111/j.1365-2699.2004.01076.x CrossRefGoogle Scholar
  61. Settele J, Kudrna O, Harpke A, Kuehn I, Van Swaay CAM, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kuehn E, Van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies, vol 1 (Special Issue). BioRisk. Pensoft Publishers, SofiaGoogle Scholar
  62. Slamova I, Klecka J, Konvicka M (2013) Woodland and grassland mosaic from a butterfly perspective: habitat use by Erebia aethiops (Lepidoptera: Satyridae). Insect Conserv Divers 6(3):243–254. doi: 10.1111/j.1752-4598.2012.00212.x CrossRefGoogle Scholar
  63. Smit HJ, Metzger MJ, Ewert F (2008) Spatial distribution of grassland productivity and land use in Europe. Agric Syst 98(3):208–219. doi: 10.1016/j.agsy.2008.07.004 CrossRefGoogle Scholar
  64. Sonderegger P (2005) Die Erebien der Schweiz (Lepidoptera: Satyrinae, Genus Erebia). Verlag Peter Sonderegger, Brügg bei BielGoogle Scholar
  65. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63(4):337–365. doi: 10.1006/jema.2001.0473 CrossRefGoogle Scholar
  66. Stuhldreher G, Hermann G, Fartmann T (2014) Cold-adapted species in a warming world—an explorative study on the impact of high winter temperatures on a continental butterfly. Entomol Exp Appl 151(3):270–279. doi: 10.1111/eea.12193 CrossRefGoogle Scholar
  67. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc B-Biol Sci 267(1439):139–145. doi: 10.1098/rspb.2000.0978 CrossRefGoogle Scholar
  68. Thomas JA, Thomas CD, Simcox DJ, Clarke RT (1986) Ecology and declining status of the silver-spotted skipper butterfly (Hesperia comma) in Britain. J Appl Ecol 23(2):365–380. doi: 10.2307/2404023 CrossRefGoogle Scholar
  69. Thomas JA, Simcox DJ, Wardlaw JC, Elmes GW, Hochberg ME, Clarke RT (1998) Effects of latitude, altitude and climate on the habitat and conservation of the endangered butterfly Maculinea arion and its Myrmica ant hosts. J Insect Conserv 2(1):39–46. doi: 10.1023/a:1009640706218 CrossRefGoogle Scholar
  70. Tonne F (1954) Besser Bauen mit Besonnungs- und Tageslicht-Planung. Karl Hoffmann, SchorndorfGoogle Scholar
  71. Turlure C, Choutt J, Van Dyck H, Baguette M, Schtickzelle N (2010) Functional habitat area as a reliable proxy for population size: case study using two butterfly species of conservation concern. J Insect Conserv 14(4):379–388. doi: 10.1007/s10841-010-9269-3 CrossRefGoogle Scholar
  72. Van Dyck H (2012) Changing organisms in rapidly changing anthropogenic landscapes: the significance of the ‘Umwelt’-concept and functional habitat for animal conservation. Evol Appl 5(2):144–153. doi: 10.1111/j.1752-4571.2011.00230.x CrossRefPubMedCentralGoogle Scholar
  73. Van Swaay CAM, Warren M (1999). Red data book of European butterflies (Rhopalocera). Nature and Environment, vol 99. Council of Europe Publishing, Strasbourg, pp 1–260Google Scholar
  74. Van Swaay CAM, Warren M (eds) (2003) Prime butterfly areas in Europe: priority sites for conservation. National Reference Centre for Agriculture, Nature Management and Fisheries, WageningenGoogle Scholar
  75. Van Swaay CAM, Maes D, Warren MS (2009) Conservation status of European butterflies. In: Settele J, Shreeve T, Konvicka M, Van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 322–338Google Scholar
  76. Vanreusel W, Van Dyck H (2007) When functional habitat does not match vegetation types: a resource-based approach to map butterfly habitat. Biol Conserv 135(2):202–211. doi: 10.1016/j.biocon.2006.10.035 CrossRefGoogle Scholar
  77. Vitousek PM (1994) Beyond global warming—ecology and global change. Ecology 75(7):1861–1876. doi: 10.2307/1941591 CrossRefGoogle Scholar
  78. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395. doi: 10.1038/416389a PubMedCrossRefGoogle Scholar
  79. Waring P (2001) Grazing and cutting as conservation management tools: the need for a cautious approach, with some examples of rare moths which have been adversely affected. Entomol Rec J Var 113(5):193–200Google Scholar
  80. Weking S, Hermann G, Fartmann T (2013) Effects of mire type, land use and climate on a strongly declining wetland butterfly. J Insect Conserv 17(6):1081–1091. doi: 10.1007/s10841-013-9585-5 CrossRefGoogle Scholar
  81. Williams CM, Marshall KE, MacMillan HA, Dzurisin JDK, Hellmann JJ, Sinclair BJ (2012) Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS ONE 7(3):e34470. doi: 10.1371/journal.pone.0034470 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Community Ecology, Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  2. 2.Ecology Group, Department of Biology and ChemistryUniversity of OsnabrückOsnabrückGermany

Personalised recommendations