Journal of Insect Conservation

, Volume 18, Issue 5, pp 781–790 | Cite as

Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change

  • Katharina Homburg
  • Patric Brandt
  • Claudia Drees
  • Thorsten Assmann


Species distribution models (SDMs), especially those basing on climatic parameters, have frequently been used to project future species ranges and to develop conservation strategies. As suggested by several authors, we considered both different dispersal abilities and different evolutionarily significant units (ESUs, as determined in an earlier genetic survey). For our study species, the flightless ground beetle Carabus irregularis, SDMs for two ESUs from the western and the Carpathian area of the distribution range showed immense, and deviating future range contractions reflecting divergent ecological requirements. As minimal dispersal SDMs resulted in a stronger decline of future ranges than the maximal dispersal models, low dispersal ability tended to strengthen the already high vulnerability of the cold-adapted mountain species to global warming. Areas shown in our maximal dispersal models as offering climatically suitable habitats for C. irregularis in the future should be considered as potential areas of action in future conservation planning (e.g. assisted migration or assisted colonisation). Thus, both dispersal scenarios and different (if applicable) ESUs should be considered when developing SDMs as useful tools for species conservation strategies adapted to species’ performance and differentiation patterns.


Assisted migration Carabidae Low dispersal Maxent Stenotopic Species distribution model 



K.H. was supported by a PhD scholarship from the German Federal Environmental Foundation (DBU; AZ 20009/055).


  1. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688CrossRefGoogle Scholar
  2. Assmann T (1995) Zur Populationsgeschichte der Laufkäfer Carabus punctatoauratus Germar und Carabus auronitens Fabricius (Coleoptera, Carabidae): Über Endemismus in eiszeitlichen Refugialräumen und postglaziale Arealausweitung. Osnabrücker Naturwissenschaftliche Mitteilungen 20(21):225–273Google Scholar
  3. Assmann T, Janssen J (1999) The effects of habitat changes on the endangered ground beetle Carabus nitens (Coleoptera: Carabidae). J Insect Conserv 3:107–116CrossRefGoogle Scholar
  4. Assmann T, Weber F (1997) On the allozyme differentiation of Carabus punctatoauratus Germar (Coleoptera, Carabidae). J Zool Syst Evol Res 35:33–43CrossRefGoogle Scholar
  5. Baselga A, Lobo JM, Svenning J-C, Aragón P, Araújo MB (2012) Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Global Ecol Biogeogr 21(11):1106–1113. doi: 10.1111/j.1466-8238.2011.00753.x CrossRefGoogle Scholar
  6. Bousquet Y (2012) Catalogue of Geadephaga (Coleoptera: Adephaga) of America, north of Mexico. ZooKeys 245:1–1722PubMedCrossRefGoogle Scholar
  7. Bousquet Y, Brezina B, Davies A, Farkac J, Smetana A (2003) Tribe Carabini Latreille, 1802. In: Löbl I, Smetana A (eds) Catalogue of Palaearctic Coleoptera, vol 1., Archostemata, MyxophagaAdephaga. Apollo Books, Stenstrup, pp 118–201Google Scholar
  8. Casale A, Kryzhanovskij OL (2003) Key to the adults. In: Turin H, Penev L, Casale A (eds) The genus Carabus in Europe—a synthesis. Sofia, Pensoft, pp 73–124Google Scholar
  9. Colas G (1969) Le Carabus (Chrysocarabus) punctatoauratus Germ. et ses races. Bull Soc Entomol Mulhouse 34:21–32Google Scholar
  10. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15(7):290–295PubMedCrossRefGoogle Scholar
  11. De Vries HH (1996) Metapopulation structure of Pterostichus lepidus and Olisthopus rotundatus on heathland in the Netherlands: the results from transplant experiments. Ann Zool Fenn 33:77–84Google Scholar
  12. Desender K, Dekoninck W, Maes D (2008) Een nieuwe verspreidingsatlas van de loopkevers en zandloopkevers (Carabidae) in België. Rapporten van het Instituut voor Natuur- en Bosonderzoek 2008 Instituut voor Natuur- en Bosonderzoek, BrusselGoogle Scholar
  13. Dieker P, Drees C, Assmann T (2011) Two high-mountain burnet moth species (Lepidoptera, Zygaenidae) react differently to the global change drivers climate and land-use. Biol Conserv 144(12):2810–2818. doi: 10.1016/j.biocon.2011.07.018 CrossRefGoogle Scholar
  14. Dieker P, Drees C, Schmitt T, Assmann T (2013) Low genetic diversity of a high mountain burnet moth species in the Pyrenees. Conserv Genet 14(1):231–236CrossRefGoogle Scholar
  15. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evolut Syst 40:677–697CrossRefGoogle Scholar
  16. Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15(4):590–601. doi: 10.1111/j.1472-4642.2009.00566.x CrossRefGoogle Scholar
  17. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49CrossRefGoogle Scholar
  18. Flechtner G (2000) Coleoptera (Käfer). Naturwaldreservate in Hessen 5/2.2—Niddahänge östlich Rudingshain. Zool Unters 1990–1992. Mitt. Hess. Landesforstverwaltung, WiesbadenGoogle Scholar
  19. Frankham R (2003) Genetics and conservation biology. C R Biol 326:22–29CrossRefGoogle Scholar
  20. Frankham R, Ballou JD, Briscoe DA (2005) Introduction to conservation genetics. 2. Auflage edn. Cambridge University Press, CambridgeGoogle Scholar
  21. Franzen M (1995) Nachweise von Carabus irregularis Fabricius, 1792 aus Rheinland-Pfalz (Coleoptera: Carabidae). Fauna Flora Rheinl-Pfalz 8:5–15Google Scholar
  22. Gebert J (2006) Die sandlaufkäfer und laufkäfer von sachsen, beiträge zur insektenfauna sachsens, Teil 1, Band 4 (Cicindelini-Loricerini). Entomologische Nachrichten und Berichte. Beiheft 10, DresdenGoogle Scholar
  23. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  24. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  25. Habel JC, Augenstein B, Nève G, Rödder D, Assmann T (2010) Population genetics and ecological niche modelling reveal high fragmentation and potential future extinction of the endangered relict butterfly Lycaena helle. In: Habel JC, Assmann T (eds) Relict species, phylogeography and conservation biology. Springer, Heidelberg, pp 417–439Google Scholar
  26. Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob Change Biol 17:194–205CrossRefGoogle Scholar
  27. Hartmann M (1998) Die Verbreitung von Carabus irregularis F., C. linnei PANZER und C. sylvestris PANZER in Thürningen (Coleoptera, Carabidae). Thüringer Faunistische Abhandlungen V:147–152Google Scholar
  28. Haubrich K, Schmitt T (2007) Cryptic differentiation in alpine-endemic, high-altitude butterflies reveals down-slope glacial refugia. Mol Ecol 16:3643–3658PubMedCrossRefGoogle Scholar
  29. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–778CrossRefGoogle Scholar
  30. Hejda R (2011) Map of distribution of Carabus irregularis in the Czech Republic. In: Zicham O (ed) Biological library—BioLib.
  31. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Clim Change Biol 12(3):450–455CrossRefGoogle Scholar
  32. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  33. Homburg K, Drees C, Gossner MM, Rakosy L, Vrezec A, Assmann T (2013) Multiple glacial refugia of the low-dispersal ground beetle Carabus irregularis: molecular data support predictions of species distribution models. PLoS One 8(4):e61185. doi: 10.1371/journal.pone.0061185 PubMedCrossRefPubMedCentralGoogle Scholar
  34. IUCN (1980) World Conservation Strategy. Living resource conservation for sustainable developmentGoogle Scholar
  35. Kharouba HM, McCune JL, Thuiller W, Huntley B (2012) Do ecological differences between taxonomic groups influence the relationship between species’ distributions and climate? A global meta-analysis using species distribution models. Ecography. doi: 10.1111/j.1600-0587.2012.07683.x
  36. Köhler F, Flechtner G (2007) Coleoptera (Käfer). Naturwaldreservate in Hessen 7/2.2 Hohestein. Zoologische Untersuchungen 1994–1996, Teil 2. WiesbadenGoogle Scholar
  37. Konvička M, Benes J, Schmitt T (2010) Ecological limits vis-à-vis changing climate: Relic Erebia butterflies in insular Sudeten mountains. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Heidelberg, pp 341–355CrossRefGoogle Scholar
  38. Linder HP, Bykova O, Dyke J, Etienne RS, Hickler T, Kühn I, Marion G, Ohlemüller R, Schymanski SJ, Singer A (2012) Biotic modifiers, environmental modulation and species distribution models. J Biogeogr 39(12):2179–2190. doi: 10.1111/j.1365-2699.2012.02705.x CrossRefGoogle Scholar
  39. Lindroth CH (1957) The faunal connections between Europe and North America. Almqvist and Wiksell and John Wiley and Sons, Stockholm and New YorkGoogle Scholar
  40. Lorenz WMT (2003) Rote Liste gefährdeter Lauf- und Sandlaufkäfer (Coleoptera Carabidae s. l.) Bayerns. Schriftenreihe Bayerisches Landesamt für Umweltschutz 166:102–111Google Scholar
  41. Loss SR, Terwilliger LA, Peterson AC (2011) Assisted colonization: integrating conservation strategies in the face of climate change. Biol Conserv 144(1):92–100. doi: 10.1016/j.biocon.2010.11.016 CrossRefGoogle Scholar
  42. Malausa JC, Drescher J (1991) The project to rescue the Italian ground beetle Chrysocarabus olympiae. Int Zoo Yearb 30:75–79CrossRefGoogle Scholar
  43. Matern A, Drees C, Desender K, Gaublomme E, Paill W, Assmann T (2009) Genetic diversity and population structure of the endangered insect species Carabus variolosus in its western distribution range: implications for conservation. Conserv Genet 10(2):391–405CrossRefGoogle Scholar
  44. Mateus CS, Almeida PR, Quintella BR, Alves MJ (2011) MtDNA markers reveal the existence of allopatric evolutionary lineages in the threatened lampreys Lampetra fluviatilis (L.) and Lampetra planeri (Bloch) in the Iberian glacial refugium. Conserv Genet 12:1061–1074CrossRefGoogle Scholar
  45. MEA (2005) Ecosystems and human well-being: biodiversity synthesis. Island Press, WashingtonGoogle Scholar
  46. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9(10):373–375PubMedCrossRefGoogle Scholar
  47. Müller-Motzfeld G, Schmidt J (in press) Rote Liste Laufkäfer (Coleoptera: Carabidae). Naturschutz und Biologische VielfaltGoogle Scholar
  48. Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios: a special report of working Group III of the Intergovernmental Panel on Climate Change. Cambridge University PressGoogle Scholar
  49. Nazeri M, Jusoff K, Madani N, Mahmud AR, Bahman AR, Kumar L (2012) Predictive modeling and mapping of Malayan sun bear (Helarctos malayanus) distribution using maximum entropy. PLoS ONE 7:e48104PubMedCrossRefPubMedCentralGoogle Scholar
  50. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  51. Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA*master site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156CrossRefGoogle Scholar
  52. Pellissier L, Pradervand J-N, Pottier J, Dubuis A, Maiorano L, Guisan A (2012) Climate-based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography 35(8):684–692. doi: 10.1111/j.1600-0587.2011.07047.x CrossRefGoogle Scholar
  53. Ramirez J, Jarvis A (2008) High resolution statistically downscaled future climate surfaces. International Center for Tropical Agriculture (CIAT). CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, ColombiaGoogle Scholar
  54. Rasplus JY, Garnier S, Meusnier S, Piry S, Mondor G, Audiot P, Cornuet J-M (2001) Setting conservation priorities: the case study of Carabus solieri (Col. Carabidae). Genet Sel Evol 33(1):141–175Google Scholar
  55. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237CrossRefGoogle Scholar
  56. Reilly SB, Marks SB, Jennings WB (2012) Defining evolutionary boundaries across parapatric ecomorphs of Black Salamanders (Aneides flavipunctatus) with conservation implications. Mol Ecol 21(23):5745–5761PubMedCrossRefGoogle Scholar
  57. Rödder D, Dambach J (2010) Bioclimatic models as predictive GIS tools for the identification of potential refugia and possible migration pathways. In: Habel J, Assmann T (eds) Relict species. phylogeography and conservation biology, Springer, pp 273–284Google Scholar
  58. Sachs L (1997) Angewandte Statistik: Anwendung statistischer Methoden Springer, BerlinGoogle Scholar
  59. Schlaepfer DR, Lauenroth WK, Bradford JB (2012) Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography 35(4):374–384. doi: 10.1111/j.1600-0587.2011.06928.x CrossRefGoogle Scholar
  60. Schloss CA, Nunez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci U S A 109(22):8606–8611. doi: 10.1073/pnas.1116791109 PubMedCrossRefPubMedCentralGoogle Scholar
  61. Schönswetter P, Tribsch A, Stehlik I, Niklfeld H (2004) Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biol J Linn Soc 81:183–195CrossRefGoogle Scholar
  62. Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156. doi: 10.1016/j.biocon.2012.06.011 CrossRefGoogle Scholar
  63. Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89(12):3472–3479PubMedCrossRefGoogle Scholar
  64. Schweiger O, Heikkinen RK, Harpke A, Hickler T, Klotz S, Kudrna O, Kühn I, Pöyry J, Settele J (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecol Biogeogr 21(1):88–99. doi: 10.1111/j.1466-8238.2010.00607.x CrossRefGoogle Scholar
  65. Schwöppe M, Kreuels M, Weber F (1998) Zur Frage der historisch oder ökologisch bedingten Begrenzung des Vorkommens einer waldbewohnenden, ungeflügelten Carabidenart: translokationsexperimente unter kontrollierten Bedingungen mit Carabus auronitens im Münsterland. Abhandlungen aus dem Landesmuseum für Naturkunde zu Münster in Westfalen 60(1):3–77Google Scholar
  66. Settele J, Dover J, Dolek M, Konvicka M (2009) Butterflies of European ecosystems: impact of land-use and options for conservation management. In: Settele J, Shreeve T, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 353–370Google Scholar
  67. Sokolár F (1909) Carabus irregularis F. Entomologische Rundschau 1909:87–89Google Scholar
  68. Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573CrossRefGoogle Scholar
  69. Taubmann J, Theissinger K, Feldheim KA, Laube I, Graf W, Haase P, Johannesen J, Pauls SU (2011) Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conserv Genet 12:503–515CrossRefGoogle Scholar
  70. Thiele HU (1977) Carabid beetles in their environments. Springer, BerlinCrossRefGoogle Scholar
  71. Turin H, Penev L, Casale A, Arndt E, Assmann T, Makarov KV, Mossakowski D, Szél G, Weber F, Turin H, Penev L, Casale A (eds) (2003) Species accounts. In: The genus Carabus in Europe—a synthesis. Pensoft Publishers and European Invertebrate Survey, Sofia, Moscow and Leiden, pp 151–283Google Scholar
  72. Vigna-Taglianti A, Bonavita P, Bruschi S, Casale A, Chemini C, DeFelici S, Brandmayr P, Zetto Brandmayr T, Casale A, Vigna Taglianti A (eds) (2000) Carabus montivagus (Coleoptera, Carabidae) in the Italian Central Alps: relict or introduced by man? In: Natural history and applied ecology of carabid beetles. Pensoft, Sofia, pp 61–70Google Scholar
  73. Vogler AP, DeSalle R (1994) Diagnosing units of conservation management. Conserv Biol 8:354–363CrossRefGoogle Scholar
  74. Vogler AP, Knisley CB, Glueck SB, Hill JM, DeSalle R (1993a) Using molecular and ecological data to diagnose endangered populations of the puritan tiger beetle Cicindela puritana. Mol Ecol 2:375–383PubMedCrossRefGoogle Scholar
  75. Vogler AP, DeSalle R, Assmann T, Knisley B, Schultz TD (1993b) Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleoptera: Cicindelidae). Ann Entomol Soc Am 86:142–152Google Scholar
  76. Wachter GA, Arthofer W, Dejaco T, Rinnhofer LJ, Steiner FM, Schlick-Steiner BC (2012) Pleistocene survival on central Alpine nunataks: genetic evidence from the jumping bristletail Machilis pallida. Mol Ecol 21:4983–4995PubMedCrossRefGoogle Scholar
  77. Waltari E, Hijmans RJ, Peterson AT, Nyári AS, Perkins SL, Guralnick RP (2007) Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2(7):e563PubMedCrossRefPubMedCentralGoogle Scholar
  78. Weber F (1966) Zur Verbreitung von Carabus irregularis Fabr. im Teutoburger Wald und Eggegebirge (Westfalen). Entomologische Blätter für Biologie und Systematik der Käfer (Krefeld) 62:1–5Google Scholar
  79. Wilson RJ, Gutiérrez D, Gutiérrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Change Biol 13(9):1873–1887. doi: 10.1111/j.1365-2486.2007.01418.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Katharina Homburg
    • 1
  • Patric Brandt
    • 2
    • 3
  • Claudia Drees
    • 1
    • 4
  • Thorsten Assmann
    • 1
  1. 1.Institute of EcologyLeuphana University LüneburgLüneburgGermany
  2. 2.Institute of Meteorology and Climate - Atmospheric Environmental Research (IMK-IFU)Karlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany
  3. 3.Research Program on Climate Change, Agriculture and Food Security (CCAFS)International Livestock Research Institute (ILRI)NairobiKenya
  4. 4.Biocentre Grindel and Zoological Museum Behavioural BiologyUniversity of HamburgHamburgGermany

Personalised recommendations