Skip to main content

Advertisement

Log in

Genetic diversity and parasite prevalence in two species of bumblebee

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Many bumblebee species have been suffering from significant declines across their ranges in the Northern Hemisphere over the last few decades. The remaining populations of the rare species are now often isolated due to habitat fragmentation and have reduced levels of genetic diversity. The persistence of these populations may be threatened by inbreeding depression, which may result in a higher susceptibility to parasites. Here we investigate the relationship between genetic diversity and prevalence of the parasitic mite Locustacarus buchneri in bumblebees, using the previously-studied system of Bombus muscorum and Bombus jonellus in the Western Isles of Scotland. We recorded L. buchneri prevalence in 17 populations of B. muscorum and 13 populations of B. jonellus and related the results to levels of heterozygosity. For B. muscorum, we found that prevalence of the mite was higher in populations with lower genetic diversity but there was no such relationship in the more genetically diverse B. jonellus. In contrast to population-level measures of genetic diversity, the heterozygosity of individual bees was not correlated with infection status. We suggest population-level genetic homogeneity may facilitate parasite transmission and elevate prevalence, with potential consequences for population persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baer B, Schmid-Hempel P (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55:1639–1643

    Article  CAS  PubMed  Google Scholar 

  • Bashir-Tanoli S, Tinsley MC (2014) Immune response costs are associated with changes in resource acquisition and not resource reallocation. Funct Ecol. doi:10.1111/1365-2435.12236

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-4. http://CRAN.R-project.org/package=lme4

  • Benton T (2006) Bumblebees. HarperCollins Publishing, London

    Google Scholar 

  • Brown MJF, Moret Y, Schmid-Hempel P (2003) Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees. Parasitology 126:253–260

    Article  CAS  PubMed  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci-Biol 108:662–667

    Article  CAS  Google Scholar 

  • Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267

    Article  Google Scholar 

  • Darvill B, Ellis JS, Lye GC, Goulson D (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol Ecol 15:601–611

    Article  CAS  PubMed  Google Scholar 

  • Darvill B, O’Connor S, Lye GC, Waters J, Lepais O, Goulson D (2010) Cryptic differences in dispersal lead to differential sensitivity to habitat fragmentation in two bumblebee species. Mol Ecol 19:53–63

    Article  CAS  PubMed  Google Scholar 

  • de Castro F, Bolker B (2005) Mechanisms of disease-induced extinction. Ecol Lett 8:117–126

    Article  Google Scholar 

  • Ebert D, Altermatt F, Lass S (2007) A short term benefit for outcrossing in a Daphnia metapopulation in relation to parasitism. J R Soc Interface 4:777–785

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellis JS, Knight ME, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386

    Article  CAS  PubMed  Google Scholar 

  • Field SG, Lange M, Schulenburg H, Velavan TP, Michiels NK (2007) Genetic diversity and parasite defense in a fragmented urban metapopulation of earthworms. Anim Conserv 10:162–175

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Goodnight KF, Queller DC (1999) Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol Ecol 8:1231–1234

    Article  Google Scholar 

  • Goulson D (2010) Bumblebees; their behaviour, ecology and conservation. Oxford University Press, Oxford

  • Goulson D, Lye GC, Darvill B (2008) Decline and conservation of bumblebees. Annu Rev Entomol 53:191–208

    Article  CAS  PubMed  Google Scholar 

  • Harrison JF, Camazine S, Marden JH, Kirkton SD, Rozo A, Yang XL (2001) Mite not make it home: tracheal mites reduce the safety margin for oxygen delivery of flying honeybees. J Exp Biol 204:805–814

    CAS  PubMed  Google Scholar 

  • Hedrick PW, Kim TJ, Parker KM (2001) Parasite resistance and genetic variation in the endangered Gila topminnow. Anim Conserv 4:103–109

    Article  Google Scholar 

  • Hughes WHO, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58:1251–1260

    Article  PubMed  Google Scholar 

  • Husband RW, Sinha RN (1970) A revision of Genus Locustacarus with a key to genera of family Podapolipidae (Acarina). Ann Entomol Soc Am 63:1152

    Google Scholar 

  • Kaunisto KM, Viitaniemi HM, Leder EH, Suhonen J (2013) Association between host’s genetic diversity and parasite burden in damselflies. J Evol Biol 26:1784–1789

    Article  CAS  PubMed  Google Scholar 

  • Korner P, Schmid-Hempel P (2005) Correlates of parasite load in bumblebees in an Alpine habitat. Entomol Sci 8:151–160

    Article  Google Scholar 

  • Lozier JD, Strange JP, Stewart IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888

    Article  PubMed  Google Scholar 

  • Luong LT, Heath BD, Polak M (2007) Host inbreeding increases susceptibility to ectoparasitism. J Evol Biol 20:79–86

    Article  CAS  PubMed  Google Scholar 

  • Marshall TC, Coltman DW, Pemberton JM, Slate J, Spalton JA, Guinness FE, Smith JA, Pilkington JG, Clutton-Brock TH (2002) Estimating the prevalence of inbreeding from incomplete pedigrees. Proc R Soc Lond B Bio 269:1533–1539

    Article  CAS  Google Scholar 

  • McMullan JB, Brown MJF (2009) A qualitative model of mortality in honey bee (Apis mellifera) colonies infested with tracheal mites (Acarapis woodi). Exp App Acarol 47:225–234

    Article  Google Scholar 

  • Moret Y, Schmid-Hempel P (2001) Entomology—immune defence in bumble-bee offspring. Nature 414:506

    Article  CAS  PubMed  Google Scholar 

  • Moret Y, Schmid-Hempel P (2004) Social life-history response to individual immune challenge of workers of Bombus terrestris L.: a possible new cooperative phenomenon. Ecol Lett 7:146–152

    Article  Google Scholar 

  • Mueller UG, Wolfmueller B (1993) A method for estimating the age of bees—age-dependent wing wear and coloration in the Wool-Carder Bee Anthidium manicatum (Hymenoptera, Megachilidae). J Insect Behav 6:529–537

    Article  Google Scholar 

  • Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol 19:613–615

    Article  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2)—population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Reed DH, Nicholas AC, Stratton GE (2007) Genetic quality of individuals impacts population dynamics. Anim Conserv 10:275–283

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Seeley TD, Tarpy DR (2007) Queen promiscuity lowers disease within honeybee colonies. Proc R Soc Lond B Bio 274:67–72

    Article  Google Scholar 

  • Shykoff JA, Schmid-Hempel P (1991) Incidence and effects of 4 parasites in natural-populations of bumble bees in Switzerland. Apidologie 22:117–125

    Article  Google Scholar 

  • Slate J, Pemberton J (2002) Comparing molecular measures for detecting inbreeding depression. J Evol Biol 15:20–31

    Article  Google Scholar 

  • Slate J, Kruuk LEB, Marshall TC, Pemberton JM, Clutton-Brock TH (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc Lond B Bio 267:1657–1662

    Article  CAS  Google Scholar 

  • Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265

    Article  CAS  PubMed  Google Scholar 

  • Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5: 439–448

    Google Scholar 

  • Trouve S, Degen L, Renaud F, Goudet J (2003) Evolutionary implications of a high selfing rate in the freshwater snail Lymnaea truncatula. Evol 57:2303–2314

  • Whitehorn PR, Tinsley MC, Brown MJF, Darvill B, Goulson D (2011) Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc R Soc Lond B Bio 278:1195–1202

    Article  Google Scholar 

  • Williams PH (1986) Environmental change and the distribution of British bumble bees. Bee World 67:50–61

    Google Scholar 

  • Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387

    Article  Google Scholar 

Download references

Acknowledgments

We thank an anonymous reviewer for comments on the manuscript. PRW was funded by a National Environment Research Council studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope R. Whitehorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitehorn, P.R., Tinsley, M.C., Brown, M.J.F. et al. Genetic diversity and parasite prevalence in two species of bumblebee. J Insect Conserv 18, 667–673 (2014). https://doi.org/10.1007/s10841-014-9673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9673-1

Keywords

Navigation