The role of a mound-building ecosystem engineer for a grassland butterfly

Abstract

Both land use intensification and abandonment within grasslands lead to a homogenisation of vegetation structure. Therefore, specially structured microsites such as vegetation gaps with bare ground play an important role for species conservation within grasslands. Vegetation gaps are crucial for the establishment of low-competitive plant species and offer special microclimatic conditions essential for the development of the immature stages of many invertebrate species. The influence of small-scale soil disturbance in the form of mounds created by ecosystem engineers such as ants or moles on biodiversity is therefore of special scientific concern. The effects of mound-building species on plant species diversity have been extensively studied. However, knowledge on the significance of these species for the conservation of other animals is rare. In this study we analyse the importance of mounds created by the European mole (Talpa europaea) as an oviposition habitat for the small copper (Lycaena phlaeas) within Central European mesotrophic grasslands. Our study showed that host plants occurring at molehills were preferred for oviposition. Oviposition sites were characterised by an open vegetation structure with a high proportion of bare ground (with a mean coverage of about 50 %), a low cover of herbs and low-growing vegetation (mean height: 4.5 cm). Our study clearly illustrates the importance of small-scale soil disturbance for immature stages of L. phlaeas and the conservation of this species within mesotrophic grasslands. Mound-building ecosystem engineers, such as T. europaea, act as important substitutes for missing dynamics within mesotrophic grasslands by diversifying vegetation structure and creating small patches of bare soil.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and meta-population structure—the key for successful management of pre-Alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185

    Article  Google Scholar 

  2. Bates D, Maechler M, Bolker B, Walker, S (2014) lme4: linear mixed-effects models using Eigen and S4. The Comprehensive R Archive Network. http://cran.r-project.org/web/packages/lme4/index.html. Accessed 18 February 2014

  3. Bergman K-O, Kindvall O (2004) Population viability analysis of the butterfly Lopinga achine in a changing landscape in Sweden. Ecography 27:49–58

    Article  Google Scholar 

  4. Bullock JM, Hill BC, Dale MP, Silvertown J (1994) An experimental study of the effects of sheep grazing on vegetation change in a species-poor grassland and the role of seedlings recruitment into gaps. J Appl Ecol 31:493–507

    Article  Google Scholar 

  5. Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38:253–267

    Article  Google Scholar 

  6. Cousins S (2009) Landscape history and soil properties affect grassland decline and plant species richness in rural landscapes. Biol Conserv 142:2752–2758

    Article  Google Scholar 

  7. Dennis RLH (2004) Landform resources for territorial nettle-feeding Nymphalid butterflies: biases at different spatial scales. Anim Biodivers Conserv 27:37–45

    Google Scholar 

  8. Dennis RLH, Sparks TH (2005) Landscape resources for the territorial Nymphalid butterfly Inachis io: microsite landform selection and behavioral responses to environmental conditions. J Insect Behav 18:725–742

    Article  Google Scholar 

  9. Drobnik J, Römermann C, Bernhardt-Römermann M, Poschlod P (2011) Adaptation of plant functional group composition to management changes in calcareous grassland. Agric Ecosyst Environ 145:29–37

    Article  Google Scholar 

  10. Duprè C, Stevens CJ, Ranke T, Bleekers A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Chang Biol 16:344–357

    Article  Google Scholar 

  11. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Bd. 2: Tagfalter II. Eugen Ulmer, Stuttgart

  12. Edwards GR, Crawley MJ, Heard MS (1999) Factors influencing molehill distribution in grassland: implication for controlling the damage caused by moles. J Appl Ecol 36:434–442

    Article  Google Scholar 

  13. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12:677–688

    Article  Google Scholar 

  14. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6th edn. Eugen Ulmer, Stuttgart

    Google Scholar 

  15. European Environment Agency (EEA) (2013) The European grassland butterfly indicator: 1990–2011. Publications Office of the European Union, Luxembourg

    Google Scholar 

  16. Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa—von den Anfängen bis heute. Abh Westf Mus Naturk 68:11–57

    Google Scholar 

  17. Fleischer K, Streitberger M, Fartmann T (2010) Zur Ökologie der Wiesen-Glockenblume (Campanula patula) und des Echten Tausendgüldenkrauts (Centaurium erythraea) im Magergrünland Nordwestdeutschlands. Tuexenia 30:209–229

    Google Scholar 

  18. Fleischer K, Streitberger M, Fartmann T (2013) The importance of disturbance for the conservation of a low-competitive herb in mesotrophic grasslands. Biologia 68:398–403

    Article  Google Scholar 

  19. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42

    Google Scholar 

  20. Grime JP, Hodgson JG, Hunt R (2007) Comparative plant ecology, 2nd edn. Castlepoint Press, Dalbeattie

    Google Scholar 

  21. Gröning J, Krause S, Hochkirsch A (2007) Habitat preferences of an endangered insect species, Cepero’s groundhopper (Tetrix ceperoi). Ecol Res 22:767–773

    Article  Google Scholar 

  22. Hooftman DAP, Bullock JM (2012) Mapping to inform conservation: a case study of changes in semi-natural habitats and their connectivity over 70 years. Biol Conserv 145:30–38

    Article  Google Scholar 

  23. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  24. King TJ (1977) The plant ecology of ant-hills in calcareous grasslands. I. Patterns of species in relation to ant-hills in southern England. J Ecol 65:235–256

    Article  Google Scholar 

  25. Krämer B, Kämpf I, Enderle J, Poniatowski D, Fartmann T (2012) Microhabitat selection in a grassland butterfly: a trade-off between microclimate and food availability. J Insect Conserv 16:857–865

    Article  Google Scholar 

  26. Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605

    PubMed Central  PubMed  Article  Google Scholar 

  27. Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) The distribution atlas of European butterflies. Gesellschaft für Schmetterlingsschutz, Halle

    Google Scholar 

  28. Küer A, Fartmann T (2005) Prominent shoots are preferred: microhabitat preferences of Maculinea alcon ([Denis & Schiffermüller], 1775) in Northern Germany. Nota Lepid 27:309–319

    Google Scholar 

  29. Lenoir L (2009) Effects of ants on plant diversity in semi-natural grasslands. Arth-Plant Inter 3:163–172

    Article  Google Scholar 

  30. Léon-Cortés JL, Cowley MJR, Thomas CD (2000) The distribution and decline of a widespread butterfly Lycaena phlaeas in a pastoral landscape. Ecol Entomol 25:285–294

    Article  Google Scholar 

  31. Mariotte P, Buttler A, Kohler F, Gilgen AK, Spiegelberger T (2013) How do subordinate and dominant species in semi-natural mountain grasslands relate to productivity and land-use change? Bas Appl Ecol 14:217–224

    Article  Google Scholar 

  32. McIntyre S, Lavorel S, Tremont R (1995) Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J Ecol 83: l–44

  33. Möllenbeck V, Hermann G, Fartmann T (2009) Does prescribed burning mean a threat to the rare satyrine butterfly Hipparchia fagi? Larval-habitat preferences give the answer. J Insect Conserv 13:77–87

    Article  Google Scholar 

  34. Munguira M, García-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54

    Google Scholar 

  35. Ödman AM, Schnoor TK, Ripa J, Olsson PA (2012) Soil disturbance as a restoration measure in dry sandy grasslands. Biodivers Conserv 21:1921–1935

    Article  Google Scholar 

  36. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  37. Porter K (1992) Eggs and egg-laying. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 46–72

    Google Scholar 

  38. R Development Core Team (2014) R: a language and environment for statistical computing. The R project for statistical computing. http://www.r-project.org. Accessed 18 February 2014

  39. Roy DB, Thomas JA (2003) Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia 134:439–444

    CAS  PubMed  Google Scholar 

  40. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–1774

    CAS  PubMed  Article  Google Scholar 

  41. Schiffers K, Tielbörger K, Jeltsch F (2010) Changing importance of environmental factors driving secondary succession on molehills. J Veg Sci 21:500–506

    Article  Google Scholar 

  42. Seifan M, Tielbörger K, Schloz-Murer D, Seifan T (2010) Contribution of molehill disturbances to grassland community composition along a productivity gradient. Acta Oecol 36:569–577

    Article  Google Scholar 

  43. Stoutjesdijk P, Barkman JJ (1992) Microclimate vegetation and fauna. Opulus Press, Uppsala

    Google Scholar 

  44. Streitberger M, Fartmann T (2013) Molehills as important habitats for the grizzled skipper, Pyrgus malvae (Lepidoptera: Hesperiidae), in calacareous grasslands. Eur J Entomol 110:643–648

    Article  Google Scholar 

  45. Streitberger M, Hermann G, Kraus W, Fartmann T (2012) Modern forest management and the decline of the Woodland Brown (Lopinga achine) in Central Europe. For Ecol Manage 269:239–248

    Google Scholar 

  46. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Phil Trans R Soc Lond Ser B Biol Sci 360:339–357

    CAS  Article  Google Scholar 

  47. Thomas JA, Clarke RT (2004) Extinction rates and butterflies. Science 305:1563–1564

    CAS  Article  Google Scholar 

  48. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond Ser B 268:1791–1796

    CAS  Article  Google Scholar 

  49. Tschöpe O, Tielbörger K (2010) The role of successional stage and small-scale disturbance for establishment of pioneer grass Corynephorus canescens. Appl Veg Sci 13:326–335

    Google Scholar 

  50. Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) (2009) Grasslands in Europe of high nature value. KNNV Publishing, Zeist

    Google Scholar 

  51. Vickery JA, Tallowin JR, Feber RE, Asteraki EJ, Atkinson PW, Fuller RJ, Brwon VK (2001) The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J Appl Ecol 38:647–664

    Article  Google Scholar 

  52. Warren SD, Büttner R (2008) Active military training areas as refugia for disturbance-dependent endangered insects. J Insect Conserv 12:671–676

    Article  Google Scholar 

  53. Watt AS (1974) Senescence and rejuvenation in ungrazed chalk grasslands (grassland B) in Breckland: the significance of litter and of moles. J Appl Ecol 11:1157–1171

    Article  Google Scholar 

  54. Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496

    Article  Google Scholar 

  55. Wenzel M, Schmitt T, Weitzel M, Seitz A (2006) The severe decline of butterflies on western German calcareous grasslands during the last 30 years: a conservation problem. Biol Conserv 128:542–552

    Article  Google Scholar 

  56. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 63:23–29

    Article  Google Scholar 

  57. Wünsch Y, Schirmel J, Fartmann T (2012) Conservation management of coastal dunes for Orthoptera has to consider oviposition and nymphal preferences. J Insect Conserv 16:501–510

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Merle Streitberger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Streitberger, M., Rose, S., Hermann, G. et al. The role of a mound-building ecosystem engineer for a grassland butterfly. J Insect Conserv 18, 745–751 (2014). https://doi.org/10.1007/s10841-014-9670-4

Download citation

Keywords

  • Bare ground
  • Conservation
  • Disturbance
  • Microclimate
  • Molehill
  • Oviposition