A spider diversity model for the Caucasus Ecoregion

Abstract

Precise information on spatial patterns of species richness and endemic species distribution is important for effective species conservation. In the Caucasus Ecoregion such information is virtually non-existent for invertebrate taxa. Using occurrence data from a large database we calculated species distribution models with the GARP algorithm for 471 spider species to visualize the diversity distribution of spider species in this region. Overall species diversity was highest in mountain forests of the North Caucasus, east-central Georgia, the southern slopes of the eastern Great Caucasus and south-east Azerbaijan. A regression tree analysis Chi squared automatic interaction detector method revealed the mean temperature of the driest quarter and precipitation parameters to be the main environmental factors shaping these patterns. Diversity of endemic species was correlated with overall species diversity but hotspots of endemic species (10+ percent of all species) exists in high-mountain areas, suggesting post-glacial speciation events in the high mountains as the main sources of high endemism in Caucasus. Further information on the spatial distribution of species diversity of invertebrate taxa in the Caucasus Ecoregion is needed to improve conservation efforts in this biodiversity hotspot.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aitchison CW (1984) Low temperature feeding by winter-active spiders. J Arachnol 12(3):297–305

    Google Scholar 

  2. Aliyev KA, Atakishiyeva AM, Gadjiyeva SA, Huseynzade GA, Huseynov EF, Mammadova TG (2009) Arthropoda of the Hirkan Corridor and Hirkan National Park: Red List Update. In: Zazanashvili N, Mallon D (eds) Status and Protection of Globally Threatened Species in the Caucasus. Contour Ltd., CEPF, pp 179–182

    Google Scholar 

  3. Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93(7):1527–1539. doi:10.1890/11-1930.1

    PubMed  Article  Google Scholar 

  4. Arponen A (2012) Prioritizing species for conservation planning. Biodivers Conserv 21:875–893. doi:10.1007/s10531-012-0242-1

    Article  Google Scholar 

  5. Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213(6):980–994. doi:10.1242/jeb.037911

    CAS  PubMed  Article  Google Scholar 

  6. Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc H-P, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, Duarte da Rocha W, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, Gama de Oliveira E, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science 338(6113):1481–1484. doi:10.1126/science.1226727

    CAS  PubMed  Article  Google Scholar 

  7. Beck J, Ballesteros-Mejia L, Buchmann CM, Dengler J, Fritz SA, Gruber B, Hof C, Jansen F, Knapp S, Kreft H, Schneider A-K, Winter M, Dormann CF (2012) What’s on the horizon for macroecology? Ecography 35(8):673–683. doi:10.1111/j.1600-0587.2012.07364.x

    Article  Google Scholar 

  8. Blick (2011) Abundant and rare spiders on tree trunks in German forests (Arachnida, Araneae). Arachnologische Mitt 40:5–14. doi:10.5431/aramit4002

    Google Scholar 

  9. Cardoso P, Scharff N, Gaspar C, Henriques SS, Carvalho R, Castro PH, Schmidt JB, Silva I, Szüts T, De Castro A, Crespo LC (2008) Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: a case study in a Mediterranean forest. Insect Conserv Divers 1(2):71–84. doi:10.1111/j.1752-4598.2007.00008.x

    Article  Google Scholar 

  10. Carvalho JC, Cardoso P, Crespo LC, Henriques S, Carvalho R, Gomes P (2012) Determinants of spider species richness in coastal dunes along a gradient of mediterraneity. Insect Conserv Divers 5(2):127–137. doi:10.1111/j.1752-4598.2011.00139.x

    Article  Google Scholar 

  11. Ceballos G, Brown JH (1995) Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol 9(3):559–568. doi:10.1046/j.1523-1739.1995.09030559.x

    Article  Google Scholar 

  12. Chaladze G (2012) Climate-based model of spatial pattern of the species richness of ants in Georgia. J Insect Conserv 16(5):791–800. doi:10.1007/s10841-012-9464-5

    Article  Google Scholar 

  13. Chatzaki M, Lymberakis P, Markakis G, Mylonas M (2005) The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species richness, activity and altitudinal range. J Biogeogr 32(5):813–831. doi:10.1111/j.1365-2699.2004.01189.x

    Article  Google Scholar 

  14. Connor SE, Kvavadze EV (2009) Modelling late quaternary changes in plant distribution, vegetation and climate using pollen data from Georgia Caucasus. J Biogeogr 36(3):529–545. doi:10.1111/j.1365-2699.2008.02019.x

    Article  Google Scholar 

  15. de Souza Muñoz M, De Giovanni R, de Siqueira M, Sutton T, Brewer P, Pereira R, Canhos D, Canhos V (2011) openModeller: a generic approach to species’ potential distribution modelling. GeoInformatica 15:111–135. doi:10.1007/s10707-009-0090-7

    Article  Google Scholar 

  16. DeVito J, Meik JM, Gerson MM, Formanowicz DR Jr (2004) Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Can J Zool 82(7):1119–1125. doi:10.1139/z04-090

    Article  Google Scholar 

  17. Diniz-Filho JAF, De Marco P Jr, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3(3):172–179. doi:10.1111/j.1752-4598.2010.00091.x

    Google Scholar 

  18. Finch O-D, Blick T, Schuldt A (2008) Macroecological patterns of spider species richness across Europe. Biodivers Conserv 17(12):2849–2868

    Article  Google Scholar 

  19. Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16(1):24–33. doi:10.1111/j.1466-8238.2006.00258.x

    Article  Google Scholar 

  20. Floren A, Otto S, Linsenmair Karl-Eduard (2008) Do spider communities in primary forests differ from those in forest-plantations? In: Schmidl J, Floren A (eds) A canopy-study in the Białowieża-Forest (Poland). Canopy arthropod research in Europe, Bioform Verlag, pp 489–506

    Google Scholar 

  21. Foelix RF (1996) Biology of Spiders. Oxford University Press, Georg Thieme Verlag

    Google Scholar 

  22. Foster-Turley P, Gokhelashivili R (2009) Biodiversity Analysis Update for Georgia. USAID, Washington DC

    Google Scholar 

  23. García A (2006) Using ecological niche modelling to identify diversity hotspots for the herpetofauna of Pacific lowlands and adjacent interior valley of Mexico. Biol Conserv 130(1):25–46. doi:10.1016/j.biocon.2005.11.030

    Article  Google Scholar 

  24. Graham CH, VanDerWal J, Phillips SJ, Moritz C, Williams SE (2010) Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33(6):1062–1069. doi:10.1111/j.1600-0587.2010.06430.x

    Article  Google Scholar 

  25. Hernández-Manrique OL, Numa C, Vverdú JR, Galante E, Lobo JM (2012) Current protected sites do not allow the representation of endangered invertebrates: the Spanish case. Insect Conserv Divers 5(6):414–421. doi:10.1111/j.1752-4598.2011.00175.x

    Article  Google Scholar 

  26. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  27. Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858. doi:10.1111/j.2008.0030-1299.16434.x

    Article  Google Scholar 

  28. Jiménez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Entomol 32(1):113–122. doi:10.1111/j.1365-2311.2006.00848.x

    Article  Google Scholar 

  29. Jiménez-Valverde A, Baselga A, Melic A, Txasko N (2010) Climate and regional beta-diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conserv Divers 3(1):51–60. doi:10.1111/j.1752-4598.2009.00067.x

    Article  Google Scholar 

  30. Kalashian MY (2009) Rare Invertebrates in Armenia. In: Zazanashvili N, Mallon D (eds) Status and Protection of Globally Threatened Species in the Caucasus. Contour Ltd., CEPF, pp 183–187

    Google Scholar 

  31. Kass GV (1980) An exploratory technique for investigating large quantities of categorical data. Appl Stat 29(2):119–127

    Article  Google Scholar 

  32. Kerr JT (2001) Butterfly species richness patterns in Canada: energy, heterogeneity, and the potential consequences of climate change. Conserv Ecol 5(1):10

    Google Scholar 

  33. Kier G, Mutke J, Dinerstein E, Ricketts TH, Küper W, Kreft H, Barthlott W (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32(7):1107–1116. doi:10.1111/j.1365-2699.2005.01272.x

    Article  Google Scholar 

  34. Konstantinov AS, Korotyaev BA, Volkovitsh MG (2009) Insect Biodiversity in the Palearctic Region. In: Foottit RG, Adler PH (eds) Insect Biodiversity, Wiley-Blackwell, pp 107–162, doi: 10.1002/9781444308211.ch7

  35. Leroy SAG, Arpe K (2007) Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J Biogeogr 34(12):2115–2128. doi:10.1111/j.1365-2699.2007.01754.x

    Article  Google Scholar 

  36. Li D, Jackson RR (1996) How temperature affects development and reproduction in spiders: a review. J Therm Biol 21(4):245–274. doi:10.1016/0306-4565(96)00009-5

    Article  Google Scholar 

  37. Marusik Y, Mikhailov KG, Guseinov EF (2006) Advance in the study of biodiversity of Caucasian spiders (Araneae). In: Deltshev C, Stoev P (eds) European Arachnology 2005, Acta zoologica bulgarica, Suppl. No. 1, pp 259–268

  38. MEPNR (2005) National Biodiversity Strategy and Action Plan - Georgia. Ministry of Environment Protection and Natural Resources, Tbilisi, Georgia, p 106, url: www.cbd.int/doc/world/ge/ge-nbsap-01-en.pdf

  39. MEPNR (2011) National Environmental Action Plan of Georgia 2011–2015. Ministry of Environment Protection and Natural Resources, Tbilisi, Georgia, p 114, url: http://moe.gov.ge/files/Tenderebi/NEAP-2_Final_Eng_6.doc

  40. Mikhailov KG (2002) The spider fauna of Russia and other post-Soviet republics: a 2000 update. In: Toft S, Scharff N (eds) European Arachnology 2000 (Proceedings of the 19th European Colloquium of Arachnology). Aarhus University Press, Aarhus, pp 255–259

    Google Scholar 

  41. Mikhailov KG, Mikhailova EA (2002). Altitudinal and biotopic distribution of the spider family Gnaphosidae in North Ossetia (Caucasus major), pp 261–265

  42. Muster C, Berendonk TU (2006) Divergence and diversity: lessons from an arctic–alpine distribution (Pardosa saltuaria group, Lycosidae). Mol Ecol 15(10):2921–2933. doi:10.1111/j.1365-294X.2006.02989.x

    CAS  PubMed  Article  Google Scholar 

  43. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    CAS  PubMed  Article  Google Scholar 

  44. Nentwig W (ed) (1987) Ecophysiology of spiders. Springer Verlag, Berlin Heidelberg

    Google Scholar 

  45. Newbold T, Gilbert F, Zalat S, El-Gabbas A, Reader T (2009) Climate-based models of spatial patterns of species richness in Egypt’s butterfly and mammal fauna. J Biogeogr 36(11):2085–2095. doi:10.1111/j.1365-2699.2009.02140.x

    Article  Google Scholar 

  46. Ortega-Huerta MA, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions—a test of six presence-only methods. Rev Mex Biodivers 79:205–216

    Google Scholar 

  47. Otto S, Floren A (2010) The canopy spiders (Araneae) of the floodplain forest in Leipzig. Arachnologische Mitt 39:25–38. doi:10.5431/aramit3904

    Article  Google Scholar 

  48. Otto S, Tramp S (2012) Caucasian Spiders—A Faunistic Database on the Spiders of the Caucasus, url: http://db.caucasus-spiders.info Accessed in January

  49. Russell-Smith A, Stork NE (1994) Abundance and diversity of spiders from the canopy of tropical rainforests with particular reference to Sulawesi, Indonesia. J Trop Ecol 10:545–558. doi:10.1017/S0266467400008221

    Article  Google Scholar 

  50. Rypstra AL (1986) Web spiders in temperate and tropical forests: relative Abundance and environmental correlates. Am Midl Nat 115:42–51

    Article  Google Scholar 

  51. Samu F, Sunderland KD, Topping CJ, Fenlon JS (1996) A spider population in flux: selection and abandonment of artificial web-sites and the importance of intraspecific interactions in Lepthyphantes tenuis (Araneae: Linyphiidae) in wheat. Oecologia 106:228–239

    Article  Google Scholar 

  52. Schäfer M (1987) Life Cycles and Diapause. In: Nentwig, W. (ed) Ecophysiology of Spiders, Springer, pp 331–347

  53. Schmalhofer VR (2011) Impacts of temperature, hunger and reproductive condition on metabolic rates of flower-dwelling crab spiders (Araneae: Thomisidae). J Arachnol 39(1):41–52

    Article  Google Scholar 

  54. Schmitt T, Muster C, Schönswetter P (2010) Are Disjunct Alpine and Arctic-Alpine Animal and Plant Species in the Western Palearctic Really “Relics of a Cold Past”? In: Habel J, Assmann T (eds) Relict Species, Springer, Berlin, pp 239–252, doi: 10.1007/978-3-540-92160-8_13

  55. Soberón JM (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography 33(1):159–167. doi:10.1111/j.1600-0587.2009.06074.x

    Article  Google Scholar 

  56. Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Google Scholar 

  57. Sørensen LL (2004) Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodivers Conserv 13(2):437–452. doi:10.1023/B:BIOC.0000006510.49496.1e

    Article  Google Scholar 

  58. Steiner E, Thaler K (2004) Höhenverteilung arborikoler Spinnen (Arachnida: Araneae) im Gebirgswald der Zentralalpen (Patscherkofel bei Innsbruck, Nordtirol). Berichte des naturwissenschaftlich-medizinischen Vererins in Innsbruck, 91:157–185

  59. Stockwell DRB (1999) Genetic algorithms II. In: Fielding AH (ed) Machine learning methods for ecological applications, Kluwer, Boston, pp 123–144

  60. Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13(2):143–158. doi:10.1080/136588199241391

    Article  Google Scholar 

  61. Swets JA (1986) Indices of discrimination or diagnostic accuracy: their ROCs and implied models. Psychol Bull 99(1):100–117. doi:10.1037/0033-2909.99.1.100

    CAS  PubMed  Article  Google Scholar 

  62. Syphard AD, Franklin J (2009) Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors. Ecography 32(6):907–918. doi:10.1111/j.1600-0587.2009.05883.x

    Article  Google Scholar 

  63. Tarkhnishvili D, Gavashelishvili A, Mumladze L (2012) Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biol J Linn Soc 105(1):231–248. doi:10.1111/j.1095-8312.2011.01788.x

    Article  Google Scholar 

  64. R Development Core Team, (2012) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, url: http://www.R-project.org

  65. van Diepen M, Franses PH (2006) Evaluating Chi squared automatic interaction detection. Info Syst 31(8):814–831. doi:10.1016/j.is.2005.03.002

    Article  Google Scholar 

  66. Vasconcelos TS, Rodríguez M, Hawkins BA (2012) Species distribution modelling as a macroecological tool: a case study using New World amphibians. Ecography 35(6):539–548. doi:10.1111/j.1600-0587.2011.07050.x

    Article  Google Scholar 

  67. Werenkraut V, Ruggiero A (2010) Quality of basic data and method to identify shape affect richness–altitude relationships in meta-analysis. Ecology 92(1):253–260. doi:10.1890/09-2405.1

    Article  Google Scholar 

  68. Williams L, Zazanashvili N, Sanadiradze G, Kandaurov A (2006) An Ecoregional Conservation Plan for the Caucasus. WWF Caucasus Programme Office, Tbilisi

    Google Scholar 

  69. Ysnel F, Pétillon EG, Canard A (2008) Assessing the conservation value of the spider fauna across the West Palearctic area. J Arachnol 36(2):457–463

    Article  Google Scholar 

  70. Zazanishvili N, Mallon D (2009) Status and Protection of globally threatened species in the Caucasus—CEPF Biodiversity Investments in the Caucasus Hotspot 2004–2009. CEPF, WWF, Contour Ltd., Tbilisi, Georgia

  71. Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning J-C (2010) New trends in species distribution modelling. Ecography 33(6):985–989. doi:10.1111/j.1600-0587.2010.06953.x

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to David Tarkhnishvili and Alexander Gavashelishvili for productive discussions of species distribution modeling. Jason Dunlop kindly commented our English.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giorgi Chaladze.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaladze, G., Otto, S. & Tramp, S. A spider diversity model for the Caucasus Ecoregion. J Insect Conserv 18, 407–416 (2014). https://doi.org/10.1007/s10841-014-9649-1

Download citation

Keywords

  • Araneae
  • Biodiversity
  • Climatic variables
  • Spatial patterns
  • Altitudinal gradient
  • Caucasus Ecoregion
  • Global hotspots