Journal of Insect Conservation

, Volume 18, Issue 3, pp 407–416 | Cite as

A spider diversity model for the Caucasus Ecoregion

  • Giorgi Chaladze
  • Stefan Otto
  • Sebastian Tramp


Precise information on spatial patterns of species richness and endemic species distribution is important for effective species conservation. In the Caucasus Ecoregion such information is virtually non-existent for invertebrate taxa. Using occurrence data from a large database we calculated species distribution models with the GARP algorithm for 471 spider species to visualize the diversity distribution of spider species in this region. Overall species diversity was highest in mountain forests of the North Caucasus, east-central Georgia, the southern slopes of the eastern Great Caucasus and south-east Azerbaijan. A regression tree analysis Chi squared automatic interaction detector method revealed the mean temperature of the driest quarter and precipitation parameters to be the main environmental factors shaping these patterns. Diversity of endemic species was correlated with overall species diversity but hotspots of endemic species (10+ percent of all species) exists in high-mountain areas, suggesting post-glacial speciation events in the high mountains as the main sources of high endemism in Caucasus. Further information on the spatial distribution of species diversity of invertebrate taxa in the Caucasus Ecoregion is needed to improve conservation efforts in this biodiversity hotspot.


Araneae Biodiversity Climatic variables Spatial patterns Altitudinal gradient Caucasus Ecoregion Global hotspots 



We are indebted to David Tarkhnishvili and Alexander Gavashelishvili for productive discussions of species distribution modeling. Jason Dunlop kindly commented our English.


  1. Aitchison CW (1984) Low temperature feeding by winter-active spiders. J Arachnol 12(3):297–305Google Scholar
  2. Aliyev KA, Atakishiyeva AM, Gadjiyeva SA, Huseynzade GA, Huseynov EF, Mammadova TG (2009) Arthropoda of the Hirkan Corridor and Hirkan National Park: Red List Update. In: Zazanashvili N, Mallon D (eds) Status and Protection of Globally Threatened Species in the Caucasus. Contour Ltd., CEPF, pp 179–182Google Scholar
  3. Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93(7):1527–1539. doi: 10.1890/11-1930.1 PubMedCrossRefGoogle Scholar
  4. Arponen A (2012) Prioritizing species for conservation planning. Biodivers Conserv 21:875–893. doi: 10.1007/s10531-012-0242-1 CrossRefGoogle Scholar
  5. Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213(6):980–994. doi: 10.1242/jeb.037911 PubMedCrossRefGoogle Scholar
  6. Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc H-P, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, Duarte da Rocha W, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, Gama de Oliveira E, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science 338(6113):1481–1484. doi: 10.1126/science.1226727 PubMedCrossRefGoogle Scholar
  7. Beck J, Ballesteros-Mejia L, Buchmann CM, Dengler J, Fritz SA, Gruber B, Hof C, Jansen F, Knapp S, Kreft H, Schneider A-K, Winter M, Dormann CF (2012) What’s on the horizon for macroecology? Ecography 35(8):673–683. doi: 10.1111/j.1600-0587.2012.07364.x CrossRefGoogle Scholar
  8. Blick (2011) Abundant and rare spiders on tree trunks in German forests (Arachnida, Araneae). Arachnologische Mitt 40:5–14. doi: 10.5431/aramit4002 Google Scholar
  9. Cardoso P, Scharff N, Gaspar C, Henriques SS, Carvalho R, Castro PH, Schmidt JB, Silva I, Szüts T, De Castro A, Crespo LC (2008) Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: a case study in a Mediterranean forest. Insect Conserv Divers 1(2):71–84. doi: 10.1111/j.1752-4598.2007.00008.x CrossRefGoogle Scholar
  10. Carvalho JC, Cardoso P, Crespo LC, Henriques S, Carvalho R, Gomes P (2012) Determinants of spider species richness in coastal dunes along a gradient of mediterraneity. Insect Conserv Divers 5(2):127–137. doi: 10.1111/j.1752-4598.2011.00139.x CrossRefGoogle Scholar
  11. Ceballos G, Brown JH (1995) Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol 9(3):559–568. doi: 10.1046/j.1523-1739.1995.09030559.x CrossRefGoogle Scholar
  12. Chaladze G (2012) Climate-based model of spatial pattern of the species richness of ants in Georgia. J Insect Conserv 16(5):791–800. doi: 10.1007/s10841-012-9464-5 CrossRefGoogle Scholar
  13. Chatzaki M, Lymberakis P, Markakis G, Mylonas M (2005) The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: species richness, activity and altitudinal range. J Biogeogr 32(5):813–831. doi: 10.1111/j.1365-2699.2004.01189.x CrossRefGoogle Scholar
  14. Connor SE, Kvavadze EV (2009) Modelling late quaternary changes in plant distribution, vegetation and climate using pollen data from Georgia Caucasus. J Biogeogr 36(3):529–545. doi: 10.1111/j.1365-2699.2008.02019.x CrossRefGoogle Scholar
  15. de Souza Muñoz M, De Giovanni R, de Siqueira M, Sutton T, Brewer P, Pereira R, Canhos D, Canhos V (2011) openModeller: a generic approach to species’ potential distribution modelling. GeoInformatica 15:111–135. doi: 10.1007/s10707-009-0090-7 CrossRefGoogle Scholar
  16. DeVito J, Meik JM, Gerson MM, Formanowicz DR Jr (2004) Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Can J Zool 82(7):1119–1125. doi: 10.1139/z04-090 CrossRefGoogle Scholar
  17. Diniz-Filho JAF, De Marco P Jr, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3(3):172–179. doi: 10.1111/j.1752-4598.2010.00091.x Google Scholar
  18. Finch O-D, Blick T, Schuldt A (2008) Macroecological patterns of spider species richness across Europe. Biodivers Conserv 17(12):2849–2868CrossRefGoogle Scholar
  19. Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16(1):24–33. doi: 10.1111/j.1466-8238.2006.00258.x CrossRefGoogle Scholar
  20. Floren A, Otto S, Linsenmair Karl-Eduard (2008) Do spider communities in primary forests differ from those in forest-plantations? In: Schmidl J, Floren A (eds) A canopy-study in the Białowieża-Forest (Poland). Canopy arthropod research in Europe, Bioform Verlag, pp 489–506Google Scholar
  21. Foelix RF (1996) Biology of Spiders. Oxford University Press, Georg Thieme VerlagGoogle Scholar
  22. Foster-Turley P, Gokhelashivili R (2009) Biodiversity Analysis Update for Georgia. USAID, Washington DCGoogle Scholar
  23. García A (2006) Using ecological niche modelling to identify diversity hotspots for the herpetofauna of Pacific lowlands and adjacent interior valley of Mexico. Biol Conserv 130(1):25–46. doi: 10.1016/j.biocon.2005.11.030 CrossRefGoogle Scholar
  24. Graham CH, VanDerWal J, Phillips SJ, Moritz C, Williams SE (2010) Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33(6):1062–1069. doi: 10.1111/j.1600-0587.2010.06430.x CrossRefGoogle Scholar
  25. Hernández-Manrique OL, Numa C, Vverdú JR, Galante E, Lobo JM (2012) Current protected sites do not allow the representation of endangered invertebrates: the Spanish case. Insect Conserv Divers 5(6):414–421. doi: 10.1111/j.1752-4598.2011.00175.x CrossRefGoogle Scholar
  26. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  27. Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858. doi: 10.1111/j.2008.0030-1299.16434.x CrossRefGoogle Scholar
  28. Jiménez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Entomol 32(1):113–122. doi: 10.1111/j.1365-2311.2006.00848.x CrossRefGoogle Scholar
  29. Jiménez-Valverde A, Baselga A, Melic A, Txasko N (2010) Climate and regional beta-diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conserv Divers 3(1):51–60. doi: 10.1111/j.1752-4598.2009.00067.x CrossRefGoogle Scholar
  30. Kalashian MY (2009) Rare Invertebrates in Armenia. In: Zazanashvili N, Mallon D (eds) Status and Protection of Globally Threatened Species in the Caucasus. Contour Ltd., CEPF, pp 183–187Google Scholar
  31. Kass GV (1980) An exploratory technique for investigating large quantities of categorical data. Appl Stat 29(2):119–127CrossRefGoogle Scholar
  32. Kerr JT (2001) Butterfly species richness patterns in Canada: energy, heterogeneity, and the potential consequences of climate change. Conserv Ecol 5(1):10Google Scholar
  33. Kier G, Mutke J, Dinerstein E, Ricketts TH, Küper W, Kreft H, Barthlott W (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32(7):1107–1116. doi: 10.1111/j.1365-2699.2005.01272.x CrossRefGoogle Scholar
  34. Konstantinov AS, Korotyaev BA, Volkovitsh MG (2009) Insect Biodiversity in the Palearctic Region. In: Foottit RG, Adler PH (eds) Insect Biodiversity, Wiley-Blackwell, pp 107–162, doi:  10.1002/9781444308211.ch7
  35. Leroy SAG, Arpe K (2007) Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J Biogeogr 34(12):2115–2128. doi: 10.1111/j.1365-2699.2007.01754.x CrossRefGoogle Scholar
  36. Li D, Jackson RR (1996) How temperature affects development and reproduction in spiders: a review. J Therm Biol 21(4):245–274. doi: 10.1016/0306-4565(96)00009-5 CrossRefGoogle Scholar
  37. Marusik Y, Mikhailov KG, Guseinov EF (2006) Advance in the study of biodiversity of Caucasian spiders (Araneae). In: Deltshev C, Stoev P (eds) European Arachnology 2005, Acta zoologica bulgarica, Suppl. No. 1, pp 259–268Google Scholar
  38. MEPNR (2005) National Biodiversity Strategy and Action Plan - Georgia. Ministry of Environment Protection and Natural Resources, Tbilisi, Georgia, p 106, url:
  39. MEPNR (2011) National Environmental Action Plan of Georgia 2011–2015. Ministry of Environment Protection and Natural Resources, Tbilisi, Georgia, p 114, url:
  40. Mikhailov KG (2002) The spider fauna of Russia and other post-Soviet republics: a 2000 update. In: Toft S, Scharff N (eds) European Arachnology 2000 (Proceedings of the 19th European Colloquium of Arachnology). Aarhus University Press, Aarhus, pp 255–259Google Scholar
  41. Mikhailov KG, Mikhailova EA (2002). Altitudinal and biotopic distribution of the spider family Gnaphosidae in North Ossetia (Caucasus major), pp 261–265Google Scholar
  42. Muster C, Berendonk TU (2006) Divergence and diversity: lessons from an arctic–alpine distribution (Pardosa saltuaria group, Lycosidae). Mol Ecol 15(10):2921–2933. doi: 10.1111/j.1365-294X.2006.02989.x PubMedCrossRefGoogle Scholar
  43. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858PubMedCrossRefGoogle Scholar
  44. Nentwig W (ed) (1987) Ecophysiology of spiders. Springer Verlag, Berlin HeidelbergGoogle Scholar
  45. Newbold T, Gilbert F, Zalat S, El-Gabbas A, Reader T (2009) Climate-based models of spatial patterns of species richness in Egypt’s butterfly and mammal fauna. J Biogeogr 36(11):2085–2095. doi: 10.1111/j.1365-2699.2009.02140.x CrossRefGoogle Scholar
  46. Ortega-Huerta MA, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions—a test of six presence-only methods. Rev Mex Biodivers 79:205–216Google Scholar
  47. Otto S, Floren A (2010) The canopy spiders (Araneae) of the floodplain forest in Leipzig. Arachnologische Mitt 39:25–38. doi: 10.5431/aramit3904 CrossRefGoogle Scholar
  48. Otto S, Tramp S (2012) Caucasian Spiders—A Faunistic Database on the Spiders of the Caucasus, url: Accessed in January
  49. Russell-Smith A, Stork NE (1994) Abundance and diversity of spiders from the canopy of tropical rainforests with particular reference to Sulawesi, Indonesia. J Trop Ecol 10:545–558. doi: 10.1017/S0266467400008221 CrossRefGoogle Scholar
  50. Rypstra AL (1986) Web spiders in temperate and tropical forests: relative Abundance and environmental correlates. Am Midl Nat 115:42–51CrossRefGoogle Scholar
  51. Samu F, Sunderland KD, Topping CJ, Fenlon JS (1996) A spider population in flux: selection and abandonment of artificial web-sites and the importance of intraspecific interactions in Lepthyphantes tenuis (Araneae: Linyphiidae) in wheat. Oecologia 106:228–239CrossRefGoogle Scholar
  52. Schäfer M (1987) Life Cycles and Diapause. In: Nentwig, W. (ed) Ecophysiology of Spiders, Springer, pp 331–347Google Scholar
  53. Schmalhofer VR (2011) Impacts of temperature, hunger and reproductive condition on metabolic rates of flower-dwelling crab spiders (Araneae: Thomisidae). J Arachnol 39(1):41–52CrossRefGoogle Scholar
  54. Schmitt T, Muster C, Schönswetter P (2010) Are Disjunct Alpine and Arctic-Alpine Animal and Plant Species in the Western Palearctic Really “Relics of a Cold Past”? In: Habel J, Assmann T (eds) Relict Species, Springer, Berlin, pp 239–252, doi:  10.1007/978-3-540-92160-8_13
  55. Soberón JM (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography 33(1):159–167. doi: 10.1111/j.1600-0587.2009.06074.x CrossRefGoogle Scholar
  56. Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10Google Scholar
  57. Sørensen LL (2004) Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodivers Conserv 13(2):437–452. doi: 10.1023/B:BIOC.0000006510.49496.1e CrossRefGoogle Scholar
  58. Steiner E, Thaler K (2004) Höhenverteilung arborikoler Spinnen (Arachnida: Araneae) im Gebirgswald der Zentralalpen (Patscherkofel bei Innsbruck, Nordtirol). Berichte des naturwissenschaftlich-medizinischen Vererins in Innsbruck, 91:157–185Google Scholar
  59. Stockwell DRB (1999) Genetic algorithms II. In: Fielding AH (ed) Machine learning methods for ecological applications, Kluwer, Boston, pp 123–144Google Scholar
  60. Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13(2):143–158. doi: 10.1080/136588199241391 CrossRefGoogle Scholar
  61. Swets JA (1986) Indices of discrimination or diagnostic accuracy: their ROCs and implied models. Psychol Bull 99(1):100–117. doi: 10.1037/0033-2909.99.1.100 PubMedCrossRefGoogle Scholar
  62. Syphard AD, Franklin J (2009) Differences in spatial predictions among species distribution modeling methods vary with species traits and environmental predictors. Ecography 32(6):907–918. doi: 10.1111/j.1600-0587.2009.05883.x CrossRefGoogle Scholar
  63. Tarkhnishvili D, Gavashelishvili A, Mumladze L (2012) Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biol J Linn Soc 105(1):231–248. doi: 10.1111/j.1095-8312.2011.01788.x CrossRefGoogle Scholar
  64. R Development Core Team, (2012) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, url:
  65. van Diepen M, Franses PH (2006) Evaluating Chi squared automatic interaction detection. Info Syst 31(8):814–831. doi: 10.1016/ CrossRefGoogle Scholar
  66. Vasconcelos TS, Rodríguez M, Hawkins BA (2012) Species distribution modelling as a macroecological tool: a case study using New World amphibians. Ecography 35(6):539–548. doi: 10.1111/j.1600-0587.2011.07050.x CrossRefGoogle Scholar
  67. Werenkraut V, Ruggiero A (2010) Quality of basic data and method to identify shape affect richness–altitude relationships in meta-analysis. Ecology 92(1):253–260. doi: 10.1890/09-2405.1 CrossRefGoogle Scholar
  68. Williams L, Zazanashvili N, Sanadiradze G, Kandaurov A (2006) An Ecoregional Conservation Plan for the Caucasus. WWF Caucasus Programme Office, TbilisiGoogle Scholar
  69. Ysnel F, Pétillon EG, Canard A (2008) Assessing the conservation value of the spider fauna across the West Palearctic area. J Arachnol 36(2):457–463CrossRefGoogle Scholar
  70. Zazanishvili N, Mallon D (2009) Status and Protection of globally threatened species in the Caucasus—CEPF Biodiversity Investments in the Caucasus Hotspot 2004–2009. CEPF, WWF, Contour Ltd., Tbilisi, GeorgiaGoogle Scholar
  71. Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning J-C (2010) New trends in species distribution modelling. Ecography 33(6):985–989. doi: 10.1111/j.1600-0587.2010.06953.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of EcologyIlia State UniversityTbilisiGeorgia
  2. 2.Department of Animal Ecology and Tropical BiologyUniversity WürzburgLeipzigGermany
  3. 3.Department of Computer Science, Business Information SystemsUniversity LeipzigLeipzigGermany

Personalised recommendations