Hybridization rate and climate change: are endangered species at risk?

Abstract

Many species are altering their geographic range due to climate change creating new sympatric populations of otherwise allopatric populations. We investigated whether climate change will affect the distribution and thus the pattern of hybridization between two pairs of closely related damselfly species [Ischnura damula and I. demorsa, and I. denticollis and I. gemina (this, an endangered species)]. Thus, we estimated the strength of pre and postmating reproductive barriers between both pairs of species, and we predicted future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change by using maximum entropy modelling technique. Our results showed that reproductive isolation (RI) is complete in I. damula × I. demorsa individuals: F1 (first generation) hybrids are produced but do not reach sexual maturation. However, RI in I. denticollis × I. gemina hybrids is high but incomplete and unidirectional: only I. gemina females produced F1 hybrids which mate with males and females of I. denticollis and between them producing BC1 (backcrosses) and F2 (second generation) viable hybrids. Maximum entropy models revealed a northern and westward shift and a general reduction of the potential geographic ranges. Based on the pattern of hybridization, for I. damula and I. demorsa there is a current threat as well as a rapid displacement and/or extinction of I. gemina by I. denticollis. However, the current pattern of extinction may not continue due to the contraction in ranges of the four species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abbott JC (2007) Ischnura gemina. In: IUCN 2012. IUCN red list of threatened species. Version 2012.1. www.iucnredlist.org

  2. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    Article  Google Scholar 

  3. Bale JSG, Masters J, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  4. Beaumont MA, Barratt EM, Gotelli D, Kitchener AC, Daniels MJ, Pritchards JK, Bruford MW (2001) Genetic diversity and introgression in the Scottish wildcat. Mol Ecol 10:319–336

    CAS  PubMed  Article  Google Scholar 

  5. Chippindale PT, Dave VK, Whitmore DH, Robinson JV (1999) Phylogenetic relationships of North American damselflies of the genus Ischnura (Odonata: Zygoptera: Coenagrionidae) based on sequences of three mitochondrial genes. Mol Phylogenet Evol 11:110–121

    CAS  PubMed  Article  Google Scholar 

  6. Corbet PS, May ML (2008) Fliers and perches among Odonata: dichotomy or multidimensional continuum? A provisional reappraisal. Int J Odonatol 11:155–171

    Article  Google Scholar 

  7. Córdoba Aguilar A (1993) Population structure in Ischnura denticollis (Burmeister) (Zygoptera: Coenagrionidae). Odonatologica 22:455–464

    Google Scholar 

  8. Coyne JA, Orr HA (1989) Patterns of speciation in Drosophila. Evolution 43:849–857

    Article  Google Scholar 

  9. Coyne JA, Orr HA (1997) “Patterns of speciation in Drosophila” revisited. Evolution 51:295–303

    Article  Google Scholar 

  10. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–679

    Article  Google Scholar 

  11. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams SA, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–152

    Article  Google Scholar 

  12. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  13. Garrison RW, Hafernik JE Jr (1981) Population structure of the rare damselfly, Ischnura gemina (Kennedy) (Odonata: Coenagrionidae). Oecologia 48:377–384

    Article  Google Scholar 

  14. Garroway C, Bowman J, Cascadenz T, Holloways G, Mahan C, Malcolm J, Steele M, Turner G, Wilson P (2010) The genetic signature of rapid range expansion by flying squirrels in response to contemporary climate warming. Glob Chang Biol 16:113–121

    Article  Google Scholar 

  15. Gullan PJ, Cranston PS (2010) The insects: an outline of entomology, 4th edn. Wiley-Blackwell Science, 565 pp

  16. Hafernik JE (1988) Surveys of potentially threatened Bay area water beetles and the San Francisco forktail damselfly. Unpublished report submitted to the U.S. Fish and Wildlife service, p 32

  17. Hannon ER, Hafernik JE (2007) Reintroduction of the rare damselfly Ischnura gemina (Odonata: Coenagrionidae) into an urban California park. J Insect Conserv 11:141–149

    Article  Google Scholar 

  18. Hickling R, Roy DB, Hill K, Thomas CD (2005) A northward shift of range margins in British Odonata. Glob Chang Biol 11:502–506

    Article  Google Scholar 

  19. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  20. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    CAS  PubMed  Article  Google Scholar 

  21. Huntley B, Collingham Y, Willis S, Green R (2008) Potential impacts of climatic change on European breeding birds. PLoS One 1:e1439

    Article  Google Scholar 

  22. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf. (Accessed 313 May 2012)

  23. Johnson C (1975) Polymorphism and natural selection in Ischnura damselflies. Evol Theory 1:81–90

    Google Scholar 

  24. Kelly B, Whiteley A, Tallmon D (2010) The Arctic melting pot. Nature 468:891

  25. Leong JM, Hafernik JE (1992) Hybridization between two damselfly species (Odonata: Coenagrionidae): morphometric and genitalic differentiation. Ann Entomol Soc Am 85:662–670

    Google Scholar 

  26. Mallet J, Wynne IR, Thomas CD (2011) Hybridisation and climate change: brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conserv Divers 4:192–200

    Article  Google Scholar 

  27. Melo J, Randi E, Boursot P, Kryukov A, Suchentrunk F, Ferrand N, Alves PC (2007) The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Mol Ecol 16:605–679

    Article  Google Scholar 

  28. Monetti L, Sánchez-Guillén RA, Cordero Rivera A (2002) Hybridization between Ischnura graellsii (Vander Linder) and I. elegans (Rambur) (Odonata: Coenagrionidae): are they different species? Biol J Linn Soc 76:225–235

    Article  Google Scholar 

  29. Moore V (2007) Nuclear genetic analysis of introgression in Ischnura damselflies of California. San Francisco State University, California

    Google Scholar 

  30. Ott J (2010) The big trek northwards: recent changes in the European dragonfly fauna. In: Settele J, Penrev L, Georgiev T, Grabaum T, Grobelink V, Hammen V, Klotz S, Kotarac M, Kühn I (eds) Atlas of biodiversity risk. Pensoft Publishers, Sofi a-Moscow, pp 82–83

  31. Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, McMillan WO, Jiggins CD (2012) Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet 8:e1002752

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Parmesan CN (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:636–637

    Article  Google Scholar 

  33. Parmesan CN, Ryrholm C, Steganescu C, Hill K (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 99:579–583

    Article  Google Scholar 

  34. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  35. Ramsey J, Bradshaw JR, Schemske DW (2003) Components of reproductive isolation between the monkey flowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–1534

    PubMed  Article  Google Scholar 

  36. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  37. Rubidge E, Taylor E (2004) Hybrid zone structure and the potential role of selection in hybridizing populations of native westslope cutthroat trout (Oncorhynchus clarki lewisi) and introduced rainbow trout (O. mykiss). Mol Ecol 12:735–748

    Google Scholar 

  38. Sánchez-Guillén RA, Van Gossum H, Cordero-Rivera A (2005) Hybridization and the inheritance of intrasexual polymorphism in two Ischnurid damselflies (Odonata: Coenagrionidae). Biol J Linn Soc 85:471–481

    Article  Google Scholar 

  39. Sánchez-Guillén RA, Wellenreuther M, Cordero-Rivera A, Hansson B (2011a) Introgression and rapid species turnover in sympatric damselflies. BMC Evol Biol 11:210

    PubMed Central  PubMed  Article  Google Scholar 

  40. Sánchez-Guillén RA, Hansson B, Wellenreuther M, Svensson EI, Cordero-Rivera A (2011b) The influence of stochastic and selective forces in the population divergence of female colour polymorphism in damselflies of the genus Ischnura. Heredity 107:513–522

    PubMed Central  PubMed  Article  Google Scholar 

  41. Sánchez-Guillén RA, Wellenreuther M, Cordero-Rivera A (2012) Strong asymmetry in the relative strengths of prezygotic and postzygotic barriers between two damselfly sister species. Evolution 66:690–707

    PubMed  Article  Google Scholar 

  42. Sánchez-Guillén RA, Muñoz J, Tapia G, Feria-Arroyo TP, Córdoba Aguilar A (2013) Climate-induced range shifts and hybridisation in insects. PLoS One 8:e80531

    PubMed Central  PubMed  Article  Google Scholar 

  43. Sánchez-Guillén RA, Córdoba Aguilar A, Cordero Rivera A, Wellenreuther M (2014) Genetic divergence predicts reproductive isolation in damselflies. J Evol Biol 27(1):76–87

    Article  Google Scholar 

  44. Taylor EB, Boughman JW, Groenenboom M, Sniatynski M, Schluter D, Gow JL (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Evolution 15:343–355

    CAS  Google Scholar 

  45. Tierney M (1996) Experimental hybridization of the damselflies Ischnura gemina and Ischnura denticollis (Odonata: Coenagrionidae). San Francisco State University, San Francisco

    Google Scholar 

  46. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    PubMed  Article  Google Scholar 

  47. Wellenreuther M, Sánchez-Guillén RA, Cordero-Rivera A, Svensson EI, Hansson B (2011) Environmental and climatic determinants of molecular diversity and genetic population structure in a coenagrionid damselfly. PLoS One 6:e20440

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risks of extinction through hybridization. Conserv Biol 15:1039–1053

    Article  Google Scholar 

Download references

Acknowledgments

To two anonymous reviewers for their valuable comments and the following colleagues for clarifying and/or providing information about distribution ranges: Rich Bailowitz, Rob Cannings, Doug Danforth, Erland Nielsen, Tim Manolis, Mike May, Dennis Paulson, Leah Ramsay and Tom Schultz. Tania Pollak provided information from her recent survey of Ischnura gemina populations. Raúl Iván Martínez Becerril provided help looking for the literature, and Jesús Ramsés Chavez Ríos for comments on the first draft of this manuscript. This research was funded by two PAPIIT grants (IN 204610 and IN 222312). RSG was supported by a postdoctoral grant (DGAPA-UNAM) from Universidad Nacional Autónoma de México. J.M. is currently supported by grant CGL2012-38624-C02-02 of the Ministry of Economy and Competitiveness of Spain.

Conflict of interest

We confirm that we have no conflict of interests.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. A. Sánchez-Guillén or A. Córdoba-Aguilar.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Guillén, R.A., Muñoz, J., Hafernik, J. et al. Hybridization rate and climate change: are endangered species at risk?. J Insect Conserv 18, 295–305 (2014). https://doi.org/10.1007/s10841-014-9637-5

Download citation

Keywords

  • Climate change
  • Range shifts
  • Sympatric distributions
  • MAXENT
  • Hybridization and introgression
  • Displacement and extinction