Journal of Insect Conservation

, Volume 18, Issue 3, pp 295–305 | Cite as

Hybridization rate and climate change: are endangered species at risk?

  • R. A. Sánchez-Guillén
  • J. Muñoz
  • J. Hafernik
  • M. Tierney
  • G. Rodriguez-Tapia
  • A. Córdoba-Aguilar
ORIGINAL PAPER

Abstract

Many species are altering their geographic range due to climate change creating new sympatric populations of otherwise allopatric populations. We investigated whether climate change will affect the distribution and thus the pattern of hybridization between two pairs of closely related damselfly species [Ischnura damula and I. demorsa, and I. denticollis and I. gemina (this, an endangered species)]. Thus, we estimated the strength of pre and postmating reproductive barriers between both pairs of species, and we predicted future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change by using maximum entropy modelling technique. Our results showed that reproductive isolation (RI) is complete in I. damula × I. demorsa individuals: F1 (first generation) hybrids are produced but do not reach sexual maturation. However, RI in I. denticollis × I. gemina hybrids is high but incomplete and unidirectional: only I. gemina females produced F1 hybrids which mate with males and females of I. denticollis and between them producing BC1 (backcrosses) and F2 (second generation) viable hybrids. Maximum entropy models revealed a northern and westward shift and a general reduction of the potential geographic ranges. Based on the pattern of hybridization, for I. damula and I. demorsa there is a current threat as well as a rapid displacement and/or extinction of I. gemina by I. denticollis. However, the current pattern of extinction may not continue due to the contraction in ranges of the four species.

Keywords

Climate change Range shifts Sympatric distributions MAXENT Hybridization and introgression Displacement and extinction 

Supplementary material

10841_2014_9637_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 20 kb)
10841_2014_9637_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 kb)
10841_2014_9637_MOESM3_ESM.pdf (1.3 mb)
Supplementary material 3 (PDF 1291 kb)

References

  1. Abbott JC (2007) Ischnura gemina. In: IUCN 2012. IUCN red list of threatened species. Version 2012.1. www.iucnredlist.org
  2. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622CrossRefGoogle Scholar
  3. Bale JSG, Masters J, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16CrossRefGoogle Scholar
  4. Beaumont MA, Barratt EM, Gotelli D, Kitchener AC, Daniels MJ, Pritchards JK, Bruford MW (2001) Genetic diversity and introgression in the Scottish wildcat. Mol Ecol 10:319–336PubMedCrossRefGoogle Scholar
  5. Chippindale PT, Dave VK, Whitmore DH, Robinson JV (1999) Phylogenetic relationships of North American damselflies of the genus Ischnura (Odonata: Zygoptera: Coenagrionidae) based on sequences of three mitochondrial genes. Mol Phylogenet Evol 11:110–121PubMedCrossRefGoogle Scholar
  6. Corbet PS, May ML (2008) Fliers and perches among Odonata: dichotomy or multidimensional continuum? A provisional reappraisal. Int J Odonatol 11:155–171CrossRefGoogle Scholar
  7. Córdoba Aguilar A (1993) Population structure in Ischnura denticollis (Burmeister) (Zygoptera: Coenagrionidae). Odonatologica 22:455–464Google Scholar
  8. Coyne JA, Orr HA (1989) Patterns of speciation in Drosophila. Evolution 43:849–857CrossRefGoogle Scholar
  9. Coyne JA, Orr HA (1997) “Patterns of speciation in Drosophila” revisited. Evolution 51:295–303CrossRefGoogle Scholar
  10. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–679CrossRefGoogle Scholar
  11. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams SA, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–152CrossRefGoogle Scholar
  12. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  13. Garrison RW, Hafernik JE Jr (1981) Population structure of the rare damselfly, Ischnura gemina (Kennedy) (Odonata: Coenagrionidae). Oecologia 48:377–384CrossRefGoogle Scholar
  14. Garroway C, Bowman J, Cascadenz T, Holloways G, Mahan C, Malcolm J, Steele M, Turner G, Wilson P (2010) The genetic signature of rapid range expansion by flying squirrels in response to contemporary climate warming. Glob Chang Biol 16:113–121CrossRefGoogle Scholar
  15. Gullan PJ, Cranston PS (2010) The insects: an outline of entomology, 4th edn. Wiley-Blackwell Science, 565 ppGoogle Scholar
  16. Hafernik JE (1988) Surveys of potentially threatened Bay area water beetles and the San Francisco forktail damselfly. Unpublished report submitted to the U.S. Fish and Wildlife service, p 32Google Scholar
  17. Hannon ER, Hafernik JE (2007) Reintroduction of the rare damselfly Ischnura gemina (Odonata: Coenagrionidae) into an urban California park. J Insect Conserv 11:141–149CrossRefGoogle Scholar
  18. Hickling R, Roy DB, Hill K, Thomas CD (2005) A northward shift of range margins in British Odonata. Glob Chang Biol 11:502–506CrossRefGoogle Scholar
  19. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  20. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485PubMedCrossRefGoogle Scholar
  21. Huntley B, Collingham Y, Willis S, Green R (2008) Potential impacts of climatic change on European breeding birds. PLoS One 1:e1439CrossRefGoogle Scholar
  22. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf. (Accessed 313 May 2012)
  23. Johnson C (1975) Polymorphism and natural selection in Ischnura damselflies. Evol Theory 1:81–90Google Scholar
  24. Kelly B, Whiteley A, Tallmon D (2010) The Arctic melting pot. Nature 468:891Google Scholar
  25. Leong JM, Hafernik JE (1992) Hybridization between two damselfly species (Odonata: Coenagrionidae): morphometric and genitalic differentiation. Ann Entomol Soc Am 85:662–670Google Scholar
  26. Mallet J, Wynne IR, Thomas CD (2011) Hybridisation and climate change: brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conserv Divers 4:192–200CrossRefGoogle Scholar
  27. Melo J, Randi E, Boursot P, Kryukov A, Suchentrunk F, Ferrand N, Alves PC (2007) The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Mol Ecol 16:605–679CrossRefGoogle Scholar
  28. Monetti L, Sánchez-Guillén RA, Cordero Rivera A (2002) Hybridization between Ischnura graellsii (Vander Linder) and I. elegans (Rambur) (Odonata: Coenagrionidae): are they different species? Biol J Linn Soc 76:225–235CrossRefGoogle Scholar
  29. Moore V (2007) Nuclear genetic analysis of introgression in Ischnura damselflies of California. San Francisco State University, CaliforniaGoogle Scholar
  30. Ott J (2010) The big trek northwards: recent changes in the European dragonfly fauna. In: Settele J, Penrev L, Georgiev T, Grabaum T, Grobelink V, Hammen V, Klotz S, Kotarac M, Kühn I (eds) Atlas of biodiversity risk. Pensoft Publishers, Sofi a-Moscow, pp 82–83Google Scholar
  31. Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, McMillan WO, Jiggins CD (2012) Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet 8:e1002752PubMedCentralPubMedCrossRefGoogle Scholar
  32. Parmesan CN (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:636–637CrossRefGoogle Scholar
  33. Parmesan CN, Ryrholm C, Steganescu C, Hill K (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 99:579–583CrossRefGoogle Scholar
  34. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  35. Ramsey J, Bradshaw JR, Schemske DW (2003) Components of reproductive isolation between the monkey flowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–1534PubMedCrossRefGoogle Scholar
  36. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  37. Rubidge E, Taylor E (2004) Hybrid zone structure and the potential role of selection in hybridizing populations of native westslope cutthroat trout (Oncorhynchus clarki lewisi) and introduced rainbow trout (O. mykiss). Mol Ecol 12:735–748Google Scholar
  38. Sánchez-Guillén RA, Van Gossum H, Cordero-Rivera A (2005) Hybridization and the inheritance of intrasexual polymorphism in two Ischnurid damselflies (Odonata: Coenagrionidae). Biol J Linn Soc 85:471–481CrossRefGoogle Scholar
  39. Sánchez-Guillén RA, Wellenreuther M, Cordero-Rivera A, Hansson B (2011a) Introgression and rapid species turnover in sympatric damselflies. BMC Evol Biol 11:210PubMedCentralPubMedCrossRefGoogle Scholar
  40. Sánchez-Guillén RA, Hansson B, Wellenreuther M, Svensson EI, Cordero-Rivera A (2011b) The influence of stochastic and selective forces in the population divergence of female colour polymorphism in damselflies of the genus Ischnura. Heredity 107:513–522PubMedCentralPubMedCrossRefGoogle Scholar
  41. Sánchez-Guillén RA, Wellenreuther M, Cordero-Rivera A (2012) Strong asymmetry in the relative strengths of prezygotic and postzygotic barriers between two damselfly sister species. Evolution 66:690–707PubMedCrossRefGoogle Scholar
  42. Sánchez-Guillén RA, Muñoz J, Tapia G, Feria-Arroyo TP, Córdoba Aguilar A (2013) Climate-induced range shifts and hybridisation in insects. PLoS One 8:e80531PubMedCentralPubMedCrossRefGoogle Scholar
  43. Sánchez-Guillén RA, Córdoba Aguilar A, Cordero Rivera A, Wellenreuther M (2014) Genetic divergence predicts reproductive isolation in damselflies. J Evol Biol 27(1):76–87CrossRefGoogle Scholar
  44. Taylor EB, Boughman JW, Groenenboom M, Sniatynski M, Schluter D, Gow JL (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Evolution 15:343–355Google Scholar
  45. Tierney M (1996) Experimental hybridization of the damselflies Ischnura gemina and Ischnura denticollis (Odonata: Coenagrionidae). San Francisco State University, San FranciscoGoogle Scholar
  46. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342PubMedCrossRefGoogle Scholar
  47. Wellenreuther M, Sánchez-Guillén RA, Cordero-Rivera A, Svensson EI, Hansson B (2011) Environmental and climatic determinants of molecular diversity and genetic population structure in a coenagrionid damselfly. PLoS One 6:e20440PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risks of extinction through hybridization. Conserv Biol 15:1039–1053CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • R. A. Sánchez-Guillén
    • 1
  • J. Muñoz
    • 2
    • 3
  • J. Hafernik
    • 4
  • M. Tierney
    • 5
  • G. Rodriguez-Tapia
    • 6
  • A. Córdoba-Aguilar
    • 1
  1. 1.Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Real Jardín Botánico (RJB-CSIC)MadridSpain
  3. 3.Centro de Biodiversidad y Cambio ClimáticoUniversidad Tecnológica IndoaméricaQuitoEcuador
  4. 4.Department of BiologySan Francisco State UniversitySan FranciscoUSA
  5. 5.USDA Forest Service, Tahoe National ForestCamptonvilleUSA
  6. 6.Unidad de Geomática, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations