Journal of Insect Conservation

, Volume 18, Issue 2, pp 257–266 | Cite as

Geographic variation in relict populations: genetics and phenotype of bush-cricket Pholidoptera frivaldskyi (Orthoptera) in Carpathians

  • Peter KaňuchEmail author
  • Benjamín Jarčuška
  • Elena Iulia Iorgu
  • Ionuţ Ştefan Iorgu
  • Anton Krištín


A decreasing population size is often causing species extinction, however, relict species persisting in small-sized populations counter this. We analysed spatial genetic variation and past changes in population size at the maternally-inherited mitochondrial DNA level to clarify the origin of all recently known isolated populations of Pholidoptera frivaldskyi occurring in the range of Carpathian Mountains. Along with that we analysed also morphological variation as some phenotypic traits can retain useful information on population genetic structure. We found a relatively low genetic diversity within isolated populations as 778 bp COI gene sequences revealed only 13 unique haplotypes (n = 173 individuals from 10 populations). The spatial analysis of molecular variance identified three geographically homogenous genetic clusters (one in Slovakia and two in Romania) with a high level of differentiation among them, suggesting restricted gene flow, whilst Bayesian skyline simulation reconstructed a negative demographic change through evolutionary time. Inferred genetic pattern clearly coincides with differences in males’ colour phenotype as the extent of pigmentation on the lateral pronotum varied significantly among genetic lineages. We suggest that geographical variation in the species populations has relict-like character and their isolated occurrence is not a result of recent introduction events. Identification of ‘evolutionary units’ may help in the conservation and management of this rare insect species.


Phylogeography Genetic drift Population decline Mountain habitats Tettigoniidae 



We would like to thank P. Tuček and M. Mikuš for helping us out in the field and for taking colour measurements of the studied individuals. Two anonymous reviewers are greatly acknowledged for valuable and insightful comments on a previous version of this manuscript. The study was financed by the Slovak Research and Development Agency (APVV-0497-10).


  1. Albrecht H, Haider S (2013) Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers Conserv 22:2243–2267CrossRefGoogle Scholar
  2. Ashcroft MB (2010) Identifying refugia from climate change. J Biogeogr 37:1407–1413Google Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. Barascud B, Martin JF, Baguette M, Descimon H (1999) Genetic consequences of an introduction-colonization process in an endangered butterfly species. J Evol Biol 12:697–709CrossRefGoogle Scholar
  5. Britten HB, Brussard PF, Murphy DD (1994) The pending extinction of the Uncompahgre fritillary butterfly. Conserv Biol 8:86–94CrossRefGoogle Scholar
  6. Brouwers NC, Newton AC (2009) The influence of habitat availability and landscape structure on the distribution of wood cricket (Nemobius sylvestris) on the Isle of Wight, UK. Landsc Ecol 24:199–212CrossRefGoogle Scholar
  7. Chobanov D, Mihajlova B (2010) Orthoptera and Mantodea in the collection of the Macedonian Museum of Natural History (Skopje) with an annotated check-list of the groups in Macedonia. Articulata 25:73–107Google Scholar
  8. Cicconardi F, Nardi F, Emerson BC, Frati F, Fanciulli PP (2010) Deep phylogeographic divisions and long-term persistence of forest invertebrates (Hexapoda: collembola) in the North-Western Mediterranean basin. Mol Ecol 19:386–400PubMedCrossRefGoogle Scholar
  9. Çiplak B (2004) Systematics, phylogeny and biogeography of Anterastes (Orthoptera, Tettigoniidae, Tettigoniinae): evolution within a refugium. Zool Scr 33:19–44CrossRefGoogle Scholar
  10. Coope GR (1994) The response of insect faunas to glacial-interglacial climatic fluctuations. Philos Trans R Soc B 344:19–26CrossRefGoogle Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  12. di Castri F (1989) History of biological invasions with emphasis on the Old World. In: Drake J, di Castri F, Groves R et al (eds) Biological invasions: a global perspective. Wiley, New York, pp 1–30Google Scholar
  13. Diekötter T, Csencsics D, Rothenbühler C, Billeter R, Edwards PJ (2005) Movement and dispersal patterns in the bush cricket Pholidoptera griseoaptera: the role of developmental stage and sex. Ecol Entomol 30:419–427CrossRefGoogle Scholar
  14. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCentralPubMedCrossRefGoogle Scholar
  15. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192PubMedCrossRefGoogle Scholar
  16. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581PubMedCrossRefGoogle Scholar
  17. Ebner R (1914) Beiträge zur Kenntnis der Orthopteren – Fauna von Österreich-Ungarn (IV. Hohe Tatra). Int Entomol Ztschr 7:309–312Google Scholar
  18. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  19. Fabriciusová V, Kaňuch P, Krištín A (2008) Body size patterns of Pholidoptera frivaldskyi (Orhtoptera) in very isolated populations. J Orthoptera Res 17:171–176CrossRefGoogle Scholar
  20. Fauvergue X, Vercken E, Malausa T, Hufbauer RA (2012) The biology of small, introduced populations, with special reference to biological control. Evol Appl 5:424–443PubMedCentralPubMedCrossRefGoogle Scholar
  21. Garnier S, Alibert P, Audiot P, Prieur B, Rasplus JY (2004) Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine insect species, Carabus solieri. Mol Ecol 13:1883–1897PubMedCrossRefGoogle Scholar
  22. Grant WS, Liu M, Gao T, Yanagimoto T (2012) Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Mol Phylogenet Evol 65:203–212PubMedCrossRefGoogle Scholar
  23. Griebeler EM, Gottschalk (2010) Conservation of the grey bush cricket Platycleis albopunctata (Orthoptera: Tettigoniidae) under differing habitat conditions: implications from an individual-based model. In: Habel JC, Thorsten A (eds) Relict species. Springer, Berlin, pp 385–399CrossRefGoogle Scholar
  24. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, CambridgeGoogle Scholar
  25. Habel JC, Augenstein B, Meyer M, Nève G, Rödder D, Assmann T (2010) Population genetics and ecological niche modelling reveal high fragmentation and potential future extinction of the endangered relict butterfly Lycaena helle. In: Habel JC, Thorsten A (eds) Relict species. Springer, Berlin, pp 417–439CrossRefGoogle Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  27. Hampe A, Jump AS (2011) Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–333CrossRefGoogle Scholar
  28. Harz K (1969) Die Orthopteren Europas—The Orthoptera of Europe, vol I. Dr. W. Junk B.V, HagueCrossRefGoogle Scholar
  29. Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20:3087–3101PubMedCrossRefGoogle Scholar
  30. Hochkirch A, Witzenberger KA, Teerling A, Niemeyer F (2007) Translocation of an endangered insect species, the field cricket (Gryllus campestris Linnaeus, 1758) in northern Germany. Biodivers Conserv 16:3597–3607CrossRefGoogle Scholar
  31. Holuša J (2012) Grasshoppers and bushcrickets regionally extinct in the Czech Republic: consequence of the disappearance of habitats scattered on the edge of their ranges. J Insect Conserv 16:949–960CrossRefGoogle Scholar
  32. Iorgu IŞ, Pisică E, Păiş L, Lupu G, Iuşan C (2008) Checklist of Romanian Orthoptera (Insecta: Orthoptera) and their distribution by ecoregions. Travaux du Muséum d’Histoire Naturelle “Grigore Antipa” 51:119–135Google Scholar
  33. Kajtoch Ł, Lachowska-Cierlik D, Mazur M (2009) Genetic diversity of xerothermic weevils Polydrusus inustus and Centricnemus leucogrammus (Coleoptera: Curculionidae) in central Europe. Eur J Entomol 106:325–334CrossRefGoogle Scholar
  34. Kajtoch Ł, Kubisz D, Gutowski JM, Babik W (2014) Evolutionary units of Coraebus elatus (Coleoptera: Buprestidae) in central and eastern Europe – implications for origin and conservation. Insect Conserv Diver 7:41–54Google Scholar
  35. Kaňuch P, Berggren Å, Cassel-Lundhagen A (2013) Colonization history of Metrioptera roeselii in northern Europe indicates human-mediated dispersal. J Biogeogr 40:977–987CrossRefGoogle Scholar
  36. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  37. Keller I, Nentwig W, Largiader CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994PubMedCrossRefGoogle Scholar
  38. Krištín A (2000) Zur Verbreitung und Ökologie der bedrohten Arten Arcyptera fusca und Pholidoptera frivaldskyi (Orthoptera) in der Slowakei. Linzer biol Beitr 32:753–761Google Scholar
  39. Krištín A, Jarčuška B, Kaňuch P, Iorgu IŞ, Iorgu EI (2013) Notes on Orthoptera (Insecta) and their assemblages in the Romanian Carpathians. Travaux du Muséum d’Histoire Naturelle “Grigore Antipa” 56:19–32Google Scholar
  40. Krzysztofiak L, Krzysztofiak A, Frąckiel K, Biała A, Kilikowska A, Sell J (2010) Genetic and morphological differentiation between isolated Polish populations of “glacial relict”, an endangered butterfly, Oeneis jutta (Lepidoptera: Nymphalidae). Eur J Entomol 107:115–120CrossRefGoogle Scholar
  41. Lande R (2009) Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol 22:1435–1446PubMedCrossRefGoogle Scholar
  42. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  43. Łomnicki AM (1875) Materialy do fauny saranczakow galicyjskich. Spraw Kom Fizyjogr, Kraków 9:150–154Google Scholar
  44. Łomnicki AM (1879) Zapisky ortopterologiczne. Spraw Kom Fizyjogr, Kraków 13:124–129Google Scholar
  45. Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352PubMedCentralPubMedCrossRefGoogle Scholar
  46. Nagy B (2005) Orthoptera fauna of the Carpathian basin—recent status of knowledge and revised checklist. Entomofauna Carpathica 17:14–22Google Scholar
  47. O’Brien SM, Gallucci VF, Hauser L (2013) Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conserv Gen 14:125–144CrossRefGoogle Scholar
  48. Ortego J, Bonal R, Cordero PJ, Aparicio JM (2009) Phylogeography of the Iberian populations of Mioscirtus wagneri (Orthoptera: Acrididae), a specialized grasshopper inhabiting highly fragmented hypersaline environments. Biol J Linn Soc 97:623–633CrossRefGoogle Scholar
  49. Ortego J, Aguirre MP, Cordero PJ (2012) Genetic and morphological divergence at different spatiotemporal scales in the grasshopper Mioscirtus wagneri (Orthoptera: Acrididae). J Insect Conserv 16:103–110CrossRefGoogle Scholar
  50. Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16PubMedCrossRefGoogle Scholar
  51. Phillipsen IC, Lytle DA (2013) Aquatic insects in a sea of desert: population genetic structure is shaped by limited dispersal in a naturally fragmented landscape. Ecography 36:731–743CrossRefGoogle Scholar
  52. Polus E, Vandewoestijne S, Choutt J, Baguette M (2007) Tracking the effects of one century of habitat loss and fragmentation on calcareous grassland butterfly communities. Biodivers Conserv 16:3423–3436CrossRefGoogle Scholar
  53. Ritchie MG, Kidd DM, Gleason JM (2001) Mitochondrial DNA variation and GIS analysis confirm a secondary origin of geographical variation in the bushcricket Ephippiger ephippiger (Orthoptera: Tettigonioidea), and resurrect two subspecies. Mol Ecol 10:603–611PubMedCrossRefGoogle Scholar
  54. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedCentralPubMedCrossRefGoogle Scholar
  55. Schmitt T (2009) Biogeographical and evolutionary importance of the European high mountain systems. Frontiers Zool 6:art9Google Scholar
  56. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675PubMedCrossRefGoogle Scholar
  57. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals Entomol Soc Am 87:651–701Google Scholar
  58. Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B Biol Sci 277:661–671CrossRefGoogle Scholar
  59. Storozhenko SA, Gorochov (1992) Contribution to the knowledge of the Orthopteran fauna of Ukrainian Carpathians (Orthoptera). Folia Entomol Hungar 52:93–96Google Scholar
  60. Stucky BJ (2012) SeqTrace: A graphical tool for rapidly processing DNA sequencing chromatograms. J Biomol Tech 23:90–93PubMedCentralPubMedCrossRefGoogle Scholar
  61. Teacher AGF, Griffiths DJ (2011) HapStar: automated haplotype network layout and visualisation. Mol Ecol Res 11:151–153CrossRefGoogle Scholar
  62. R Development Core Team (2011). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  63. Turnock D (2003) Settlement and sustainability in the Carpathians: pre-modern settlement history with particular reference to the role of pastoralism in Romania. Analele Universităţii de Vest din Timişoara, Geografie 13:91–114Google Scholar
  64. Vickers K, Sveinbjarnardottir G (2013) Insect invaders, seasonality and transhumant pastoralism in the Icelandic shieling economy. Enviro Archaeo 18:165–177CrossRefGoogle Scholar
  65. Wagner C (2004) Passive dispersal of Metrioptera bicolor (Phillipi 1830) (Orthopteroidea: Ensifera: Tettigoniidae) by transfer of hay. J Insect Conserv 8:287–296CrossRefGoogle Scholar
  66. Warchałowska-Śliwa E, Michailova P (1993) Cytological study of Pholidoptera frivaldsky (Herm.) (Decticidae, Orthoptera). Cytobios 74:155–162Google Scholar
  67. Warchałowska-Śliwa E, Heller K-G, Maryańska-Nadachowska A (2005) Cytogenetic variability of European Tettigoniinae (Orthoptera, Tettigoniidae): karyotypes, C-and Ag-NOR-banding. Folia Biol (Kraków) 53:161–171CrossRefGoogle Scholar
  68. Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580CrossRefGoogle Scholar
  69. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458CrossRefGoogle Scholar
  70. Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter Kaňuch
    • 1
    Email author
  • Benjamín Jarčuška
    • 1
  • Elena Iulia Iorgu
    • 2
  • Ionuţ Ştefan Iorgu
    • 2
  • Anton Krištín
    • 1
  1. 1.Institute of Forest EcologySlovak Academy of SciencesZvolenSlovakia
  2. 2.“Grigore Antipa” National Museum of Natural HistoryBucharestRomania

Personalised recommendations