Skip to main content

Advertisement

Log in

Forces driving the composition of butterfly assemblages in Andorra

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Despite the impact that human presence has on the area, Andorra in the eastern Pyrenees still harbours a rich butterfly fauna and is a potentially excellent area for studying the effects of global change on biodiversity. The aim of this study was to identify and understand the factors that are inducing observed patterns of butterfly richness in Andorra. We used data collected between 2006 and 2010 from six transects of the Andorran Butterfly Monitoring Scheme that lie at heights from 1,000 to 2,400 m a.s.l. These transects are divided into 44 discrete sections and during the study period 18,603 individuals belonging to 126 butterfly species were recorded. The effects of elevation and habitat composition on species richness and abundance were analyzed, as was the presence of spatial structure in the butterfly assemblages. We found a clear tendency for species richness to decrease as elevation increased and also identified a major faunal turnover. Habitat composition seems to have little effect on species richness and butterfly abundance. A spatial structure was observed in the dataset, with a positive spatial autocorrelation at section scale that reflects a clear effect of altitudinal gradient on species assemblages. Finally, a cluster analysis enabled us to define two main faunistic groups, corresponding to lower (generally in closed habitats) and higher sites (generally in subalpine meadows and grasslands). We thus conclude that the elevation gradient is the principal factor driving butterfly distribution and abundance in Andorra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Tree 18:182–188. doi:10.1016/S0169-5347(03)00011-9

    Google Scholar 

  • Bergman K-O, Askling J, Ekberg O et al (2004) Landscape effects on butterfly assemblages in an agricultural region. Ecography 27:619–628. doi:10.1111/j.0906-7590.2004.03906.x

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Caritg R, Domènech M, Dantart J, Jubany J (2010) Andorran butterfly monitoring scheme. J Insect Conserv 15:341–344. doi:10.1007/s10841-010-9352-9

    Article  Google Scholar 

  • Carnicer J, Brotons L, Stefanescu C, Peñuelas J (2012) Biogeography of species richness gradients: linking adaptive traits, demography and diversification. Biol Rev 87:457–479. doi:10.1111/j.1469-185X.2011.00210.x

    Article  PubMed  Google Scholar 

  • Carreras J, Carillo E, Ferré A, Ninot J (2003) Mapa digital dels hàbitats d’Andorra

  • Colwell RK, Coddington JA (1994) Estimating Terrestrial Biodiversity through Extrapolation. Philos Trans R Soc Lond B 345:101–118. doi:10.1098/rstb.1994.0091

    Article  CAS  Google Scholar 

  • Crist T, Veech J, Gering J, Summerville K (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. Am Nat 162:734–743

    Article  PubMed  Google Scholar 

  • Dantart J, Jubany J (2012) Les papallones diürnes d’Andorra. Institut d’Estudis Andorrans, Principat d’Andorra

  • Devictor V, van Swaay C, Brereton T et al (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Chang 2:121–124. doi:10.1038/nclimate1347

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Ekroos J, Heliölä J, Kuussaari M (2010) Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J Appl Ecol 47:459–467. doi:10.1111/j.1365-2664.2009.01767.x

    Article  Google Scholar 

  • Gering JC, Crist TO, Veech JA (2003) Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conserv Biol 17:488–499

    Article  Google Scholar 

  • Gutiérrez D (1997) Importance of historical factors on species richness and composition of butterfly assemblages (Lepidoptera: rhopalocera) in a northern Iberian mountain range. J Biogeogr 24:77–88. doi:10.1111/j.1365-2699.1997.tb00052.x

    Article  Google Scholar 

  • Gutiérrez D (2009) Butterfly richness patterns and gradients. The ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 281–295

    Google Scholar 

  • Gutiérrez Illán J, Gutiérrez D, Wilson RJ (2010a) Fine-scale determinants of butterfly species richness and composition in a mountain region. J Biogeogr 37:1706–1720. doi:10.1111/j.1365-2699.2010.02314.x

    Article  Google Scholar 

  • Gutiérrez Illán J, Gutiérrez D, Wilson RJ (2010b) The contributions of topoclimate and land cover to species distributions and abundance: fine-resolution tests for a mountain butterfly fauna. Glob Ecol Biogeogr 19:159–173. doi:10.1111/j.1466-8238.2009.00507.x

    Article  Google Scholar 

  • Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv 68:167–180. doi:10.1016/0006-3207(94)90348-4

    Article  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Tree 22:569–574

    PubMed  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2003) Local species immigration, extinction, and turnover of butterflies in relation to habitat area and habitat isolation. Oecologia 137:591–602. doi:10.1007/s00442-003-1353-x

    Article  PubMed  Google Scholar 

  • Kuussaari M, Heliölä J, Luoto M, Pöyry J (2007) Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agric Ecosyst Environ 122:366–376. doi:10.1016/j.agee.2007.02.008

    Article  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13. doi:10.2307/3545743

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673. doi:10.2307/1939924

    Article  Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Plant Ecol 80:107–138

    Article  Google Scholar 

  • Legendre P, Legendre L (2000) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Luoto M, Heikkinen R (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob Chang Biol 14:483–494. doi:10.1111/j.1365-2486.2007.01527.x

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Moss D, Wyatt B, Cornaert MH, Roekaerts M (1991) CORINE biotopes : the design, compilation and use of an inventory of sites of major importance for nature conservation in the European community. Office for official publications of the European communities, Luxembourg

    Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, New York

    Google Scholar 

  • Oden N, Sokal R (1986) Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst Biol 35:608–617. doi:10.2307/2413120

    Google Scholar 

  • Parmesan C (2003) Butterflies as bioindicators for climate change effects. Butterflies. Ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 541–560

    Google Scholar 

  • Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Springer, Berlin

    Google Scholar 

  • Sanchez-Rodriguez J, Baz A (1995) The effects of elevation on the butterfly communities of a Mediterranean mountain, Sierra de Javalambre, central Spain. J Lepidopterists’ Soc 49:192–207

    Google Scholar 

  • Sokal R (1986) Spatial data analysis and historical processes. Data analysis and informatics. North-Holland, Amsterdam, pp 29–43

    Google Scholar 

  • Stefanescu C, Herrando S, Páramo F (2004) Butterfly species richness in the north-west Mediterranean Basin: the role of natural and human-induced factors. J Biogeogr 31:905–915. doi:10.1111/j.1365-2699.2004.01088.x

    Article  Google Scholar 

  • Stefanescu C, Peñuelas J, Filella I (2009) Rapid changes in butterfly communities following the abandonment of grasslands: a case study. Insect Conserv Divers 2:261–269

    Article  Google Scholar 

  • Stefanescu C, Carnicer J, Peñuelas J (2011) Determinants of species richness in generalist and specialist mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34:353–363. doi:10.1111/j.1600-0587.2010.06264.x

    Article  Google Scholar 

  • Thomas CD, Thomas JA, Warren MS (1992) Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567. doi:10.1007/BF00317850

    Article  Google Scholar 

  • Turner JRG, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos 48:195–205

    Article  Google Scholar 

  • Van Swaay C, Nowicki P, Settele J, van Strien A (2008) Butterfly monitoring in Europe: methods, applications and perspectives. Biodivers Conserv 17:3455–3469. doi:10.1007/s10531-008-9491-4

    Article  Google Scholar 

  • Van Swaay C, Cuttelod A, Collins S et al (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Veech J., Crist T. (2009) PARTITION: software for hierarchical partitioning of species diversity, version 3.0

  • Wagner HH, Wildi O, Ewald KC (2000) Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landsc Ecol 15:219–227

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338. doi:10.2307/1943563

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks are due to all those who collaborate with the BMSAnd: Jordi Dalmau, Ann Matschke, Carles Mújica, Jordi Nicolau, Josep Palau and Eric Sylvestre. We also wish to thank Jordi Dantart and Jordi Jubany for their unstinting assistance with the BMSAnd and for their thorough work on Andorran butterflies. The BMSAnd project was supported by the Andorran Research Institute (IEA) with support from the Catalan BMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Komac.

Appendices

Appendix 1

See Table 3.

Table 3 Principal information (number of sections, length, main habitat, altitudinal range and number of butterfly species and individuals) recorded in each section in the BMSAnd

Appendix 2

See Table 4.

Table 4 List of the 126 butterfly species found in the BMSAnd with the number of individuals sampled in each transect: 2006–2010: Enclar, Comapedrosa and Sorteny, 2007–2010: Fontaneda, Rec del Sola and Pessons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komac, B., Stefanescu, C., Caritg, R. et al. Forces driving the composition of butterfly assemblages in Andorra. J Insect Conserv 17, 897–910 (2013). https://doi.org/10.1007/s10841-013-9571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-013-9571-y

Keywords

Navigation