Skip to main content

Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups

Abstract

Bioindicators, as taxa or functional groups, are widely used as indicators of environmental change, specific ecological factors or taxonomic diversity. The use of ecological, environmental and biodiversity indicators, is reviewed here. Although indicator taxa are considered to be generally unreliable as broad indicators of biodiversity, they may serve a useful function in identifying ecological characteristics or monitoring the effects of habitat management. Use of only a narrow range of taxa may be unreliable, and is particularly vulnerable to distortion by a small number of invasive species. Taxa also need to be selected to reflect the specific ecosystem being studied. It is recommended that isopods be used for soil systems (if there is sufficient local diversity), in some areas earthworms or mites may be useable but are generally too difficult to identify to be practically useful. In the ground layer indicator sets could include ants, millipedes, molluscs (snails in particular), ground beetles, harvestmen and gnaphosid spiders. Foliage-inhabiting indicators could comprise ants, chrysomelid leaf beetles, theridiid spiders and arctiid moths. Ants, orthopterans and butterflies may be appropriate for use in open habitats. These basic sets should be supplemented by other taxa where appropriate resources and taxonomic expertise are available.

This is a preview of subscription content, access via your institution.

References

  1. Abensperg-Traun M, Steven D (1995) The effects of pitfall trap diameter on ant species richness (Hymenoptera: Formicidae) and species composition of the catch in a semi-arid eucalypt woodland. Aust J Ecol 20:282–287

    Article  Google Scholar 

  2. Aguilar-Amuchastegui N, Henebry GM (2007) Assessing sustainability indicators for tropical forests: spatio-temporal heterogeneity, logging intensity, and dung beetle communities. Forest Ecol Manage 253:56–67

    Article  Google Scholar 

  3. Almeida S, Louzada J, Sperber C, Barlow J (2011) Subtle land-use change and tropical biodiversity: dung beetle communities in cerrado grasslands and exotic pastures. Biotropica 43:704–710

    Article  Google Scholar 

  4. Alonso LE (2000) Ants as indicators of diversity. In: Agosti D, Majer J, Alonso E, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Biological diversity handbook series. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  5. Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. J Biogeogr 22:15–29

    Article  Google Scholar 

  6. Andersen AN (1997) Using ants as bioindicators: multi-scale issues in ant community ecology. Conser Ecol 1(1):8

    Google Scholar 

  7. Andersen AN, Müller WJ (2000) Arthropod responses to experimental fire regimes in an Australian tropical savannah: ordinal-level analysis. Aust Ecol 25:199–209

    Article  Google Scholar 

  8. Andersen AN, Morrison S, Belbin L (1996) The role of ants in mine site restoration in Kakadu region of Australia’s northern territory, with particular reference to their use as bioindicators. Final report to the ERISS, p 125

  9. Andersen AN, Hoffmann BD, Müller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant-community responses. J Appl Ecol 39:8–17

    Article  Google Scholar 

  10. Andersen AN, Cook GD, Corbett LK et al (2005) Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Aust Ecol 30:155–167

    Article  Google Scholar 

  11. Andresen E (2003) Effect of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography 26:87–97

    Article  Google Scholar 

  12. Axmacher JC, Liu Y, Wang C, Li L, Yu Z (2011) Spatial α-diversity patterns of diverse insect taxa in Northern China: lessons for biodiversity conservation. Biol Conserv 144:2362–2368

    Article  Google Scholar 

  13. Aydin G, Kazak C (2010) Selecting indicator species habitat description and sustainable land utilization: a case study in a Mediterranean delta. Int J Agric Biol 12:931–934

    Google Scholar 

  14. Babin-Fenske J, Anand M (2010) Terrestrial insect communities and the restoration of an industrially perturbed landscape: assessing success and surrogacy. Restor Ecol 18:73–84

    Article  Google Scholar 

  15. Báldi A (2003) Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera, and Acari species in Central-Hungarian reserves. Basic Appl Ecol 4:589–593

    Article  Google Scholar 

  16. Balvanera P, Kremen C, Martinez-Ramos M (2005) Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol Appl 15:360–375

    Article  Google Scholar 

  17. Barbercheck ME, Neher DA, Anas O, El-Allaf SM, Weicht TR (2009) Response of soil invertebrates to disturbance across three resource regions in North Carolina. Environ Monitor Assess 152:283–298

    CAS  Article  Google Scholar 

  18. Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491

    CAS  Article  Google Scholar 

  19. Barros YJ, Melo VD, Sautter KD, Buschle B, de Oliveira EB, de Azevedo JCR, Souza LCD, Kummer L (2010) Soil quality indicators in lead mining and metallurgy area. II-mesofauna and plants. Rev Bras Cien Solo 34:1413–1426

    CAS  Article  Google Scholar 

  20. Bazelet CS, Samwaus MJ (2011) Identifying grasshopper bioindicators for habitat quality assessment of ecological networks. Ecol Indic 11:1259–1269

    Article  Google Scholar 

  21. Bazelet CS, Samways MJ (2012) Grasshopper and butterfly local congruency in grassland remnants. J Insect Conserv 16:71–85

    Article  Google Scholar 

  22. Beccaloni GW, Gaston KJ (1995) Predicting the species richness of neotropical butterflies, Ithomiinae (Lepidoptera: Nymphalidae) as indicators. Biol Conserv 71:77–86

    Article  Google Scholar 

  23. Betrus CJ, Fleishman E, Blair RB (2005) Cross-taxonomic potential and spatial transferability of an umbrella species index. J Environ Manage 74:79–87

    Article  PubMed  Google Scholar 

  24. Bhardwaj M, Uniyal VP, Sanyal AK, Singh AP (2012) Butterfly communities along an elevational gradient in the Tons valley, WesternHimalayas: implications of rapid assessment for insect conservation. J Asia-Pac Entomol 15:207–217

    Article  Google Scholar 

  25. Bisevac L, Majer JD (1999) Comparative study of ant communities of rehabilitated mineral sand mines and heathland, Western Australia. Restorat Ecol 7:117–126

    Article  Google Scholar 

  26. Bishop DJ, Majka CG, Bondrup-Nielsen S, Peck SB (2009) Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia. Zookeys 22:309–340

    Article  Google Scholar 

  27. Booth LH, Bithell SL, Wratten SD, Heppelthwaite VJ (2003) Vineyard pesticides and their effects on invertebrate biomarkers and bioindicator species in New Zealand. Bull Environ Contam Toxicol 71:1131–1138

    CAS  Article  PubMed  Google Scholar 

  28. Brändle M, Durka W, Altmoos M (2000) Diversity of surface dwelling beetle assemblages in open-cast lignite mines in central Germany. Biodiv Conserv 9:1297–1311

    Article  Google Scholar 

  29. Bried JT, Herman BD, Ervin GN (2007) Umbrella potential of plants and dragonflies for wetland conservation: a quantitative case study using the umbrella index. J Appl Ecol 44:833–842

    Article  Google Scholar 

  30. Bried JT, D’Amico, Samways MJ (2011) A critique of the dragonfly delusion: why sampling exuviae does not avoid bias. Insect Divers Conserv 5(5):398–402

  31. Brooks DR, Bohan DA, Champion GT, Haughton AJ, Hawes C, Heard MS, Clark SJ, Dewar AM, Firbank LG, Perry JN, Rothery P, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Bell D, Browne EL, Dewar AJG, Fairfax CM, Garner BH, Haylock LA, Horne SL, Hulmes SE, Mason NS, Norton LR, Nuttall P, Randle Z, Rossall MJ, Sands RJN, Singer EJ, Walker MJ (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Phil Trans Roy Soc Lond B 358:1847–1862

    CAS  Article  Google Scholar 

  32. Broza M, Poliakov D, Weber S, Izhaki I (1993) Soil microarthropods on postfire pine forests on Mount Carmel, Israel. Water Sci Technol 27:533–538

    Google Scholar 

  33. Buchholz S (2010) Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodiv Conserv 19:2565–2595

    Article  Google Scholar 

  34. Burbidge AH, Leicester K, McDavitt S, Majer JD (1992) Ants as indicators of disturbance at Yanchep National Park, Western Australia. J Roy Soc West Aust 75:89–95

    Google Scholar 

  35. Butovsky RO (2011) Heavy metal in carabids (Coleopter, Carabidae). ZooKeys 100:215–222

    Article  PubMed  Google Scholar 

  36. Camann MA, Gillette NE, Lamoncha KL, Mori SR (2008) Response of forest soil Acari to prescribed fire following stand structure manipulation in the southern Cascade Range. Can J For Res 38:956–968

    Article  Google Scholar 

  37. Cardoso P, Silva I, de Oliveira NG, Serrano ARM (2004a) Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 117:453–459

    Google Scholar 

  38. Cardoso P, Silva I, de Oliveira NG, Serrano ARM (2004b) Indicator taxa of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 120:517–524

    Google Scholar 

  39. Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  40. Caro TM, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814

    Article  Google Scholar 

  41. Carpaneto GM, Fattorini S (2001) Spatial and seasonal organisation of a darkling beetle (Coleoptera, Tenebrionidae) community inhabiting a Mediterranean coastal dune system. Ital J Zool 68:207–214

    Article  Google Scholar 

  42. Cattin MF, Blandenier G, Banasek-Richter C (2003) The impact of mowing as a management strategy for wet meadows on spider (Araneae) communities. Biol Conserv 113:179–188

    Article  Google Scholar 

  43. Chagnon M, Pare D, Hebert C, Camire C (2001) Effects of experimental liming on Collembolan communities and soil microbial biomass in a southern Quebec sugar maple (Acer saccharum Marsh.) stand. Appl Soil Ecol 17:81–90

    Article  Google Scholar 

  44. Chambers BQ, Samways MJ (1998) Grasshopper response to a 40-year experimental burning and mowing regime, with recommendations for invertebrate conservation management. Biodiv Conserv 7:985–1012

    Article  Google Scholar 

  45. Chessman BC (1995) Rapid assessment of rivers using macroinvertebrates: a procedure based on habitat-specific sampling, family-level identification and a biotic index. Aust J Ecol 20:122–129

    Article  Google Scholar 

  46. Chovanec A, Waringer J, Raab R, Laister G (2004) Lateral connectivity of a fragmented larger river system: assessment on a macroscale by dragonflies (Insecta: Odonata). Aquat Conserv Mar Freshw Ecosyst 14:163–178

    Article  Google Scholar 

  47. Chovanec A, Waringer J, Straif M, Graf W, Reckendorfer W, Waringer-Löschenkohl A, Waidbacher H, Schŭltz H (2005) The Floodplain Index—a new approach for assessing the ecological status of river/floodplain-systems according to the EU Water Framework Directive. Large Rivers 15:169–185

    Google Scholar 

  48. Ciamporova-Zat’ovicova Z, Hamerlik L, Sporka F, Bitusik P (2010) Littoral benthic macroinvertebrates of alpine lakes (Tatra Mts) along an altitudinal gradient: a basis for climate change assessment. Hydrobiologia 648:19–34

    Article  Google Scholar 

  49. Clarke GM (1993) Patterns of developmental stability of Chrysopa perla (Neuroptera, Chrysopidae) in response to environmental pollution. Environ Entomol 22:1362–1366

    Google Scholar 

  50. Cluzeau D, Guernion M, Chaussod R, Martin-Laurent F, Villenave C, Cortet J, Ruiz-Camacho N, Pernin C, Mateille T, Philippot L, Bellido A, Rougé L, Arrouays D, Bispo A, Pérès G (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72

    Article  Google Scholar 

  51. Coelho MS, Fernandes GW, Santos JC, Delabie JHC (2009) Ants (Hymenoptera: Formicidae) as bioindicators of land restoration in a Brazilian Atlantic forest fragment. Sociobiology 54:51–63

    Google Scholar 

  52. Cranston PS, Trueman JWH (1997) “Indicator” taxa in invertebrate biodiversity assessment. Mem Natn Mus Vict 56:267–274

    Google Scholar 

  53. Daniels SR, Picker MD, Cowlin RM, Hamer ML (2009) Unravelling evolutionary lineages among South African velvet worms (Onychophora: Peripatopsis) provides evidence for widespread cryptic speciation. Biol J Linn Soc 97:200–216

    Article  Google Scholar 

  54. Davis ALV, Scholtz CH, Chown SL (1999) Species turnover, community boundaries and biogeographical composition of dung beetle assemblages across an altitudinal gradient in South Africa. J Biogeogr 26:1039–1055

    Article  Google Scholar 

  55. Davis AJ, Holloway JD, Huijbregts H, Krikken J, Kirk-Spriggs AH, Sutton SL (2001) Dung beetles as indicators of change in the forests of northern Borneo. J Appl Ecol 38:593–616

    Article  Google Scholar 

  56. De Souza MM, Louzada J, Serrao JE, Zanuncio JC (2010) Social wasps (Hymenoptera: Vespidae) as indicators of conservation degree of riparian forests in southeast Brazil. Sociobiology 56:387–396

    Google Scholar 

  57. Dekoninck W, Desender K, Grootaert P (2008) Establishment of ant communities in forests growing on former agricultural fields: colonisation and 25 years of management are not enough (Hymenoptera: Formicidae). Eur J Entomol 105:681–689

    Google Scholar 

  58. Delabie J, Céréghino R, Groc S, Dejean A, Gibernau M, Corbara B, Dejean A (2009) Ants as biological indicators of Wayana Amerindian land use in French Guiana. Comp Rend Biol 332:673–684

    Article  Google Scholar 

  59. Dennis RLH (2010) A resource-based habitat view for conservation. Butterflies in the British landscape. Wiley-Blackwell, London

    Book  Google Scholar 

  60. Di Castri E, Vernhes JR, Yaounes DT (1992) Inventorying and monitoring biodiversity. Biol Intern 27:1–27

    Google Scholar 

  61. Disney RHL (1986) Assessments using invertebrates: posing the problem. In: Usher MB (ed) Wildlife conservation evaluation. Chapman & Hall, London, pp 271–293

    Google Scholar 

  62. Doran NE, Kiernan K, Swain R, Richardson AMM (1999) Hickmania troglodytes, the Tasmanian Cave Spider, and its potential role in cave management. J Insect Conserv 3:257–262

    Article  Google Scholar 

  63. Dover J, Warren M, Shreeve T (eds) (2011) Lepidoptera conservation in a changing world. Springer, Dordrecht

    Google Scholar 

  64. Duelli P, Obrist MK (2003) Biodiversity indicators: the choice of values and measures. Agric Ecosyst Environ 98:87–98

    Article  Google Scholar 

  65. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for an asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  66. Eeva T, Penttinen R (2009) Leg deformities of oribatid mites as an indicator of environmental pollution. Sci Total Environ 407:4771–4776

    CAS  Article  PubMed  Google Scholar 

  67. Ekschmitt K, Stierhof T, Dauber J, Kreimes K, Wolters V (2003) On the quality of soil biodiversity indicators: abiotic and biotic parameters as predictors of soil faunal richness at different spatial scales. Agric Ecosyst Environ 98:273–283

    Article  Google Scholar 

  68. Escobar F, Halffter G, Solís Á, Halffter V, Navarrete D (2008) Temporal shifts in dung beetle community structure within a protected area of tropical wet forest: a 35-year study and its implications for long-term conservation. J Appl Ecol 45:1584–1592

    Article  Google Scholar 

  69. Fattorini S (2008) Ecology and conservation of tenebrionid beetles in Mediterranean coastal areas. In: Fattorini S (ed) Insect ecology and conservation. Research Signpost, Trivandrum, pp 165–297

    Google Scholar 

  70. Fattorini S (2010) Effects of fire on tenebrionid communities of a Pinus pinea plantation: a case study in a Mediterranean site. Biodiv Conserv 9:1237–1250

    Google Scholar 

  71. Fattorini S, Dennis RLH, Cook LM (2011) Conserving organisms over large regions requires multi-taxa indicators: one taxon’s diversity-vacant area is another taxon’s diversity zone. Biol Conserv 144:1690–1701

    Article  Google Scholar 

  72. Fernandes LH, Nessimian JL, de Mendonca MC (2009) Structure of Poduromorpha (Collembola) communities in “restinga” environments in Brazil. Pesquisa Agropecuaria Brasileira 44:1033–1039

    Article  Google Scholar 

  73. Fiera C (2009) Biodiversity of Collembola in urban soils and their use as bioindicators for pollution. Pesquisa Agropecuaria Brasileira 44:868–873

    Article  Google Scholar 

  74. Filgueiras BKC, Iannuzzi L, Leal IR (2011) Habitat fragmentation alters the structure of dung beetle communities in the Atlantic Forest. Biol Conserv 144:362–369

    Article  Google Scholar 

  75. Finch OD, Loffler J (2010) Indicators of species richness at the local scale in an alpine region: a comparative approach between plant and invertebrate taxa. Biodiv Conserv 19:1341–1352

    Article  Google Scholar 

  76. Finch OD, Loffler J, Pape R (2008) Assessing the sensitivity of Melanoplus frigidus (Orthoptera: Acrididae) to different weather conditions: a modeling approach focussing on development times. Insect Sci 15:167–178

    Article  Google Scholar 

  77. Fleishman E, Murphy DD, Brussard PF (2000) A new method for selection of umbrella species for conservation planning. Ecol Appl 10:569–579

    Article  Google Scholar 

  78. Fleishman E, Blair RB, Murphy DD (2001) Empirical validation of a method for umbrella species selection. Ecol Appl 11:1489–1501

    Article  Google Scholar 

  79. Fleishman E, Mac Nally R, Murphy DD (2005) Relationships among non–native plants, diversity of plants and butterflies, and adequacy of spatial sampling. Biol J Linn Soc 85:157–166

    Article  Google Scholar 

  80. Foeckler F, Deichner O, Schmidt H, Castella E (2006) Suitability of molluscs as bioindicators for meadow- and flood-channels of the elbe-floodplains. Int Rev Hydrobiol 91:314–325

    Article  Google Scholar 

  81. Fox MD, Fox BJ (1982) Evidence for interspecific competition influencing ant species diversity in regenerating heathland. In: Buckley RC (ed) Ant-plant interactions in Australia. Junk, The Hague, pp 99–110

    Chapter  Google Scholar 

  82. Gaigher R, Samways MJ, Henwood J, Joliffe K (2011) Impacts of a mutualism between an invasive ant species and honeydew-producing insects on a tropical island. Biol Inv 13:1717–1721

    Article  Google Scholar 

  83. Garcia M, Ortego F, Castanera P, Farinos GP (2010) Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria. Biol Control 55:225–233

    CAS  Article  Google Scholar 

  84. Gardi C, Menta C, Leoni A (2008) Evaluation of environmental impact of agricultural management practices using soil microarthropods. Fresenius Environ Bull 17:1165–1169

    CAS  Google Scholar 

  85. Gardner TA, Hernández MIM, Barlow J, Peres CA (2007) Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J Appl Ecol 45:883–893

    Article  Google Scholar 

  86. Gaston KJ (2000) Biodiversity: higher taxon richness. Progr Phys Geogr 24(1):17–127

    Google Scholar 

  87. Gavlas V, Bednar J, Kristin A (2007) A comparative study on orthopteroid assemblages along a moisture gradient in the Western Carpathians. Biologia 62:95–102

    Article  Google Scholar 

  88. Geissen V, Kampichler C (2004) Limits to the bioindication potential of Collembola in environmental impact analysis: a case study of forest soil-liming and fertilization. Biol Fertil Soil 39:383–390

    CAS  Article  Google Scholar 

  89. Gerhardt A, de Bisthoven LJ, Soares AMVM (2004) Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay. Environ Pollut 130:263–274

    CAS  Article  PubMed  Google Scholar 

  90. Gerlach J (2003) Patterns of diversity on tropical islands. Biota 4:21–48

    Google Scholar 

  91. Gibson CWD, Brown VK, Losito L, McGavin GC (1992) The response of invertebrate assemblies to grazing. Ecography 15:166–176

    Article  Google Scholar 

  92. Gollan JR, Smith HM, Bulbert M, Donnelly AP, Wilkie L (2010) Using spider web types as a substitute for assessing web-building spider biodiversity and the success of habitat restoration. Biodiv Conserv 19:3141–3155

    Article  Google Scholar 

  93. Gomez AD (2010) Activity density versus biomass distribution patterns among ground-beetle species as bioindicator for conservation planning over a wide range of altitudes in Tenerife (Canary Islands). Ecol Indicat 10:1213–1217

    Article  Google Scholar 

  94. Greenslade P (2007) The potential of Collembola to act as indicators of landscape stress in Australia. Aust J Exp Agric 47:424–434

    Article  Google Scholar 

  95. Gulvik ME (2007) Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Polish J Ecol 55:415–440

    Google Scholar 

  96. Halaj J, Halpern CB, Yi H (2009) Effects of green-tree retention on abundance and guild composition of corticolous arthropods. Forest Ecol Manage 258:850–859

    Article  Google Scholar 

  97. Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Phil Trans Roy Soc Lond B 345:119–136

    Article  Google Scholar 

  98. Haughton AJ, Champion GT, Hawes C, Heard MS, Brooks DR, Bohan DA, Clark SJ, Dewar AM, Firbank LG, Osborne JL, Perry JN, Rothery P, Roy DB, Scott RJ, Woiwod IP, Birchall C, Skellern MP, Walker JH, Baker P, Browne EL, Dewar AJG, Garner BH, Haylock LA, Horne SL, Mason NS, Sands RJN, Walker MJ (2003) Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Phil Trans Roy Soc Lond B 358:1863–1877

    CAS  Article  Google Scholar 

  99. Hayes L, Mann DJ, Monastyrskii AL, Lewis OT (2009) Rapid assessments of tropical dung beetle and butterfly assemblages: contrasting trends along a forest disturbance gradient. Insect Conserv Div 2:194–203

    Article  Google Scholar 

  100. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    CAS  Article  PubMed  Google Scholar 

  101. Heink U, Kowarik I (2010) What criteria should be used to select biodiversity indicators. Biodiv Conserv 19:3769–3797

    Article  Google Scholar 

  102. Hilbeck A, Meier M, Benzler A (2008) Identifying indicator species for post-release monitoring of genetically modified, herbicide resistant crops. Euphytica 164:903–912

    CAS  Article  Google Scholar 

  103. Hilty JA, Merenlender JM (2000) A comparison of covered trackplates and remotely triggered cameras. Trans West Sec Wildl Soc 36:27–31

    Google Scholar 

  104. Hoffmann BD, Lowe LM, Griffiths AD (2002) Reduction in cricket (Orthoptera: Ensifera) populations along a gradient of sulphur dioxide from mining emissions in northern Australia. Aust J Entomol 41:182–186

    Article  Google Scholar 

  105. Hogg ID, Hebert PDN (2004) Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Can J Zool 82:749–754

    Article  Google Scholar 

  106. Hollaway JD, Stork NE (1991) The dimensions of biodiversity: the use of invertebrates as indicators of human impact. In: Hawksworth DL (ed) Biodiversity of microorganisms and invertebrates: its role in sustainable agriculture. In: Proceeding of the first workshop on the ecological foundations of sustainable agriculture. WEFSA 1, London

  107. Horvath R, Magura T, Szinetar C (2009) Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: a field study (East Hungary, Nyirseg). Agric Ecosyst Environ 130:16–22

    Article  Google Scholar 

  108. Howard PC, Viskanic P, Davenport TRB, Kigenyi FW, Baltzer M, Dickinson CJ, Lwanga JS, Matthews RA, Balmford A (1998) Complementarity and the use of indicator groups for reserve selection in Uganda. Nature 394:472–475

    CAS  Article  Google Scholar 

  109. Hutcheson J (1990). Characterization of terrestrial insect communities using quantified, Malaise-trapped Coleoptera. Ecol Entomol 15:143–151

    Google Scholar 

  110. Irato P, Santovito G, Cassini A, Piccinni E, Albergoni V (2003) Metal accumulation and binding protein induction in Mytilus galloprovencialis, Scapharca inaequivalis, and Tapes philippinarum from the lagoon of Venice. Arch Environ Contam Toxicol 44:476–480

    CAS  Article  PubMed  Google Scholar 

  111. Ito M, Itou K, Ito K (2010) Are carabid beetles suitable biotic indicators of insecticide impact in potato fields? Appl Entomol Zool 45:435–447

    Article  Google Scholar 

  112. Jacobs CT, Scholtz CH, Escobar F, Davis ALV (2010) How might intensification of farming influence dung beetle diversity (Coleoptera: Scarabaeidae) in Maputo Special Reserve (Mozambique)? J Insect Conserv 14:389–399

    Article  Google Scholar 

  113. Jana G, Misra KK, Bhattacharya T (2006) Diversity of some insect fauna in industrial and non-industrial areas of West Bengal, India. J Insect Conserv 10:249–260

    Article  Google Scholar 

  114. Janzen DH, Hallwachs W (2011) Joining inventory by parataxonomists with DNA barcoding of a large complex tropical conserved wildland in northwestern Costa Rica. PLoS One 6:e18123

    CAS  Article  PubMed  Google Scholar 

  115. Janzen DH, Hajibabaei M, Burns JM, Hallwachs W, Remigio E, Hebert PDN (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Phil Trans Roy Soc Lond B 360:1835–1845

    CAS  Article  Google Scholar 

  116. Jeanneret P, Schupbach B, Pfiffner L, Walter T (2003) Arthropod reaction to landscape and habitat features in agricultural landscapes. Landsc Ecol 18:253–263

    Article  Google Scholar 

  117. Jenkins DW (1971) Global biological monitoring. In: Matthews WH, Smith FE, Goldberg ED (eds) Man’s impact on terrestrial and oceanic ecosystems. The Colonial Press, New York

    Google Scholar 

  118. Jonas JL, Whiles MR, Charlton RE (2002) Aboveground invertebrate responses to land management differences in a central Kansas grassland. Environ Entomol 31:1142–1152

    Article  Google Scholar 

  119. Jung MP, Kim ST, Kim H, Lee JH (2008) Species diversity and community structure of ground-dwelling spiders in unpolluted and moderately heavy metal-polluted habitats. Water Air Soil Pollut 195:15–22

    CAS  Article  Google Scholar 

  120. Jung C, Kim JW, Marquardt T, Kaczmarek S (2010) Species richness of soil gamasid mites (Acari: Mesostigmata) in fire-damaged mountain sites. J Asia-Pac Entomol 13:233–237

    Article  Google Scholar 

  121. Kadlec T, Kotela MAAM, Novak I, Konvicka M, Jarosik V (2009) Effect of land use and climate on the diversity of moth guilds with different habitat specialization. Commun Ecol 10:152–158

    Article  Google Scholar 

  122. Kaiser W, Avenant NL, Haddad CR (2009) Assessing the ecological integrity of a grassland ecosystem: the applicability and rapidity of the SAGraSS method. Afr J Ecol 47:308–317

    Article  Google Scholar 

  123. Kapoor V (2008) Effects of rainforest fragmentation and shade-coffee plantations on spider communities in the Western Ghats, India. J Insect Conserv 12:53–68

    Article  Google Scholar 

  124. Kapp C (2013) Nematode soil community structure and function as a bio-indicator of soil health in fynbos and deciduous fruit orchards. MSc thesis, Stellenbosch University South Africa

  125. Kappes H, Jabin M, Kulfan J, Zach P, Topp W (2009) Spatial patterns of litter-dwelling taxa in relation to the amounts of coarse woody debris in European temperate deciduous forests. Forest Ecol Manage 257:1255–1260

    Article  Google Scholar 

  126. Kasperi M, Majer JD (2000) Using ants to monitor environmental change. In: Agosti D, Majer J, Alonso E, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity., Biological diversity handbook seriesSmithsonian Institution Press, Washington DC

    Google Scholar 

  127. Kati V, Devillers V, Dufrene M (2004) Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conserv Biol 18:667–675

    Article  Google Scholar 

  128. King KL, Hutchinson KJ (2007) Pasture and grazing land: assessment of sustainability using invertebrate bioindicators. Aust J Exp Agric 47:392–403

    Article  Google Scholar 

  129. Klein B (1989) Effects of forest fragmentation on dung and carrion beetle communities in central Amazonia. Ecology 70:1715–1725

    Article  Google Scholar 

  130. Koivula MJ (2011) Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100:287–317. doi:10.3897/zookeys.100.1533

    PubMed  Google Scholar 

  131. Kopeszki H (1992) A 1st attempt using soil dwelling collembolan species Folsomia candida (Willem) and Heteromurus nitidus (Templeton) as an active bioindicator in beech forest ecosystems. Zool Anz 228:82–90

    Google Scholar 

  132. Kotze DJ, Lawes MJ (2008) Environmental indicator potential of the dominant litter decomposer, Talitriator africana (Crustacea, Amphipoda) in Afrotemperate forests. Aust Ecol 33:737–746

    Article  Google Scholar 

  133. Kotze DJ, Samways MJ (1999) Support for the multi-taxa approach in biodiversity assessment, as shown by epigaeic invertebrates in an Afromontane forest archipelago. J Insect Conserv 3:125–143

    Article  Google Scholar 

  134. Kotze DJ, Samways MJ (2001) No general edge effects for invertebrates at Afromontane forest/grassland ecotones. Biodiv Conserv 10:443–446

    Article  Google Scholar 

  135. Kozlov MV, Jalava J, Lvovsky AL, Mikkola K (1996) Population densities and diversity of Noctuidae (Lepidoptera) along an air pollution gradient on the Kola Peninsula, Russia. Entomol Fenn 7:9–15

    Google Scholar 

  136. Kremen CR (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol Appl 2:203–217

    Article  Google Scholar 

  137. Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–805

    Article  Google Scholar 

  138. LaSalle J, Gauld ID (1993) Hymenoptera: their diversity and their impact on the diversity of other organisms. In: LaSalle J, Gauld ID (eds) Hymenoptera and biodiversity. CAB International, Wallingford, pp 1–27

    Google Scholar 

  139. Lawes MJ, Kotze DJ, Bourquin SL, Morris C (2005) Epigaeic invertebrates as potential ecological indicators of afromontane forest condition in South Africa. Biotropica 37:109–118

    Article  Google Scholar 

  140. Lawler JJ, White D, Sifneos JC, Master LL (2003) Rare species and the use of indicator groups for conservation planning. Conserv Biol 17:875–882

    Article  Google Scholar 

  141. Lawton JH (1994) What do species do in ecosystems? Gikos 71:367–374

    Google Scholar 

  142. Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa and effect of habitat modification in tropical forest. Nature 391:72–76

    CAS  Article  Google Scholar 

  143. Lehtinen PT (1995) Revision of the old world Holothyridae (Arachnida: Anactinotrichida: Holothyrina). Invertebr Taxon 9(4):767–826

    Article  Google Scholar 

  144. Lenhard SC, Witter JA (1977) Insects as biological indicators of environmental change. Bull Entomol Soc Am 23:191–193

    Google Scholar 

  145. Li LJ, Liu XM, Guo YP, Ma EB (2005) Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis (Orthoptera: Acridoidae). Environ Toxicol Pharmacol 20:412–416

    CAS  Article  Google Scholar 

  146. Lins VS, Santos H, Goncalves MC (2007) The effect of the glyphosate, 2,4-D, atrazine e nicosulfuron herbicides upon the edaphic Collembola (Arthropoda : Ellipura) in a no tillage system. Neotrop Entomol 36:261–267

    CAS  Article  PubMed  Google Scholar 

  147. Liu WPA, Janion C, Chown SL (2012) Collembola diversity in the critically endangered cape flats sand fynbos and adjacent pine plantations. Pedobiol. doi:10.1016/j.pedobi.2012.03.002

    Google Scholar 

  148. Lombard AT (1995) The problems with multi-species conservation: do hotspots, ideal reserves and existing reserves coincide. S Afr J Zool 30:145–163

    Google Scholar 

  149. Louzada J, Lima AP, Matavelli R, Zambaldi L, Barlow J (2010) Community structure of dung beetles in Amazonian savannas: role of fire disturbance, vegetation and landscape structure. Landsc Ecol 25:631–641

    Article  Google Scholar 

  150. Lövei G, Pedersen BP, Felkl G, Brodsgaard H, Hansen LM (2002) Developing a test system for evaluating environmental risks of transgenic plants: the polyphagous predator module. Antenna 26:104–105

    Google Scholar 

  151. Lovell S, Hamer M, Slotow R, Hebert D (2007) Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol Conserv 139:113–125

    Article  Google Scholar 

  152. Lu SS, Samways MJ (2002) Behavioural ecology of the Karkloof blue butterfly Orachrysops ariadne (Lepidoptera: Lycaenidae) relevant to its conservation. Afr Entomol 10:137–147

    Google Scholar 

  153. Luff ML, Woiwod IP (1995) Insects as indicators of land-use change: a European perspective, focusing on moths and ground beetles. In: Harrington R, Stork NE (eds) Insects in a changing environment. Academic Press, London

    Google Scholar 

  154. Mac Nally R, Fleishman E (2002) Using “indicator” species to model species richness: analysis and prediction for Great Basin butterfly assemblages. Ecol Appl 12:79–92

    Article  Google Scholar 

  155. Mac Nally R, Fleishman E (2004) A successful predictive model of species richness using ‘indicator’ species. Conserv Biol 18:646–654

    Article  Google Scholar 

  156. Madden KE, Fox BJ (1997) Arthropods as indicators of the effects of fluoride pollution on the succession following sand mining. J Appl Ecol 34:1239–1256

    CAS  Article  Google Scholar 

  157. Maes D, Van Dyck H (2005) Habitat quality and biodiversity indicator performances of a threatened butterfly versus a multispecies group for wet heathlands in Belgium. Biol Conserv 123:177–187

    Article  Google Scholar 

  158. Magagula CN, Samways MJ (2001) Maintenance of ladybeetle diversity across a heterogenous African agricultural/savanna land mosaic. Biodiv Conserv 10:209–222

    Article  Google Scholar 

  159. Magoba RN, Samways MJ (2010) Recovery of benthic macroinvertebrate and adult dragonfly assemblages in response to large scale removal of riparian invasive alien trees. J Insect Conserv 14:627–636

    Article  Google Scholar 

  160. Magoba RNN, Samways MJ (2012) Comparative footprint of alien, agricultural and restored vegetation on surface-active arthropods. Biol Invas 14:165–177

    Article  Google Scholar 

  161. Magura T, Horvath R, Tothmeresz B (2010) Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landsc Ecol 25:621–629

    Article  Google Scholar 

  162. Majer JD (1983) Ants bioindicators of mine site rehabilitation, land-use and land conservation. Environ Manage 7:375–383

    Article  Google Scholar 

  163. Majer JD (1985) Reconlonization by ants of rehabilitated mineral sand mines on North Stradbroke Island, Queensland, with particular reference to seed removal. Aust J Ecol 10:31–48

    Article  Google Scholar 

  164. Majer JD (1992) Ant recolonization of rehabilitated bauxite mines of Pocos de Caldas, Brazil. J Trop Ecol 8:97–108

    Article  Google Scholar 

  165. Majer JD, de Kock AE (1992) Ant recolonization of sand mines near Richards Bay, South Africa: an evaluation of progress with rehabilitation. S Afr J Sci 88:31–36

    Google Scholar 

  166. Majer JD, Day JE, Kabay ED, Perriman WS (1984) Recolonization by ants in bauxite mines rehabilitated by a number of different methods. J Appl Ecol 21:355–375

    Article  Google Scholar 

  167. Majer JD, Brennan KEC, Moir ML (2007) Invertebrates and the restoration of a forest ecosystem: 30 years of research following bauxite mining in Western Australia. Restor Ecol 15:104–115

    Article  Google Scholar 

  168. McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev 73:181–201

    Article  Google Scholar 

  169. McGeoch MA (2007) Insects and bioindication: theory and progress. In: Stewart AJA, New TR, Lewis OT (eds) Insect conservation biology. Proceedings of the royal entomological society’s 23rd symposium. CAB International, Wallingford, pp 144–174

  170. McGeoch MA, Van Rensburg BJ, Botes A (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. J Appl Ecol 39:661–672

    Article  Google Scholar 

  171. McGeoch MA, Sithole H, Samways MJ, Simaika JP, Pryke JS, Picker M, Uys C, Armstrong AJ, Dippenaar-Schoeman AS, Engelbrecht IA, Braschler B, Hamer M (2011) Conservation and monitoring of invertebrates in terrestrial protected areas. Koedoe 53:1–13

    Google Scholar 

  172. Midega CAO, Khan ZR, van den Berg J, Ogol CKPO, Dippenaar-Schoeman AS, Pickett JA, Wadhams LJ (2008) Response of ground-dwelling arthropods to a ‘push-pull’ habitat management system: spiders as an indicator group. J Appl Entomol 132:248–254

    Article  Google Scholar 

  173. Mutwakil MHAZ, Reader JP, Holdich DM, Smithurst PR, Candido EPM, Jones D, Stringham EG (1997) Environmental contamination and toxicology use of stress-inducible transgenic nematodes as biomarkers of heavy metal pollution in water samples from an English river system. Archiv Environ Contamin Toxicol 153:146–153

    Article  Google Scholar 

  174. Negro M, Isaia M, Palestrini C, Schoenhofer A, Rolando A (2010) The impact of high-altitude ski pistes on ground-dwelling arthropods in the Alps. Biodiv Conserv 19(7):1853–1870

    Article  Google Scholar 

  175. New TR (1998) The role of ground beetles (Coleoptera: Carabidae) in monitoring programmes in Australia. Ann Zool Fenn 35:163–171

    Google Scholar 

  176. New TR (2007) Are predatory arthropods useful indicators in Australian agroecosystems? Aust J Exper Agric 47:450–454

    Article  Google Scholar 

  177. New TR (2010) Butterfly conservation in Australia: the importance of community participation. J Insect Conserv 14:305–311

    Article  Google Scholar 

  178. Newell GR (1997) The abundance of ground-dwelling invertebrates in a Victorian forest affected by ‘dieback’ (Phyrophthora cinnamomi) disease. Aust J Ecol 22:206–217

    Article  Google Scholar 

  179. Nichols E, Larsen T, Spector S, Davis AL, Escobar F, Favila M, Vuline K (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19

    Article  Google Scholar 

  180. Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila M (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474

    Article  Google Scholar 

  181. Nielsen ST (2007) Deforestation and biodiversity: effects of bushland cultivation on dung beetles in semi-arid Tanzania. Biodiv Conserv 16:2753–2769

    Article  Google Scholar 

  182. Niemelä J, Kotze J, Ashworth A, Brandmayr P, Desender K, New T, Penev L, Samways MJ, Spence J (2000) The search for common anthropogenic impacts on biodiversity: a global network. J Insect Conserv 4:3–9

    Article  Google Scholar 

  183. Niemi G, McDonald M (2004) Application of ecological indicators. Ann Rev Ecol Evol Syst 35:89–111

    Article  Google Scholar 

  184. Nota B, Bosse M, Ylstra B, van Straalen NM, Roelofs D (2009) Transcriptomics reveals extensive inducible biotransformation in the soil-dwelling invertebrate Folsomia candida exposed to phenanthrene. BMC Genomics 10:236

    Article  PubMed  CAS  Google Scholar 

  185. Oertli B (2008) The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Córdoba-Aguilar A (ed) Dragonflies & damselflies: model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 79–95

    Chapter  Google Scholar 

  186. Oliver I, Beattie AJ (1996a) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10:99–109

    Article  Google Scholar 

  187. Oliver I, Beattie AJ (1996b) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Conserv Biol 39:72–76

    Google Scholar 

  188. Oliver I, Beattie AJ, York A (1998) Spatial fidelity of plant, vertebrate, and invertebrate assemblages in multiple-use forest in eastern Australia. Conserv Biol 12:822–835

    Article  Google Scholar 

  189. O’Neill KP, Godwin HW, Jimenez-Esquilin AE, Battigelli JP (2010) Reducing the dimensionality of soil micro invertebrate community datasets using indicator species analysis: implications for ecosystem monitoring and soil management. Soil Biol Biochem 42:145–154

    Article  CAS  Google Scholar 

  190. Orabi G, Moir ML, Majer JD (2010) Assessing the success of mine restoration using Hemiptera as indicators. Aust J Zool 58:243–249

    Article  Google Scholar 

  191. Paoletti MG, D’Inca A, Tonin E, Tonon S, Migliorini C, Petruzzelli G, Pezzarossa B, Gomiero T, Sommaggio D (2010) Soil invertebrates as bio-indicators in a natural area converted from agricultural use: the case study of Vallevecchia-Lugugnana in north-eastern Italy. J Sust Agric 34:38–56

    Article  Google Scholar 

  192. Paolucci LN, Solar RRC, Schoereder JH (2010) Litter and associated ant fauna recovery dynamics after a complete clearance. Sociobiology 55:133–144

    Google Scholar 

  193. Pate E, Ndiaye-Faye N, Thioulouse J, Villenave C, Bongers T, Cadet P, Debouzie D (2000) Successional trends in the characteristics of soil nematode communities in cropped and fallow lands in Senegal (Sonkorong). Appl Soil Ecol 14:5–15

    Article  Google Scholar 

  194. Pearson DL, Cassola F (1992) Worldwide species richness patterns of Tiger beetles (Coleopter. Cicindelidae). Indicator taxon for biodiversity and conservation studies. Conserv Boil 6:376–391

    Article  Google Scholar 

  195. Pearson DL, Cassola F (2005) A quantitative analysis of species descriptions of tiger beetles (Coleoptera: Cicindelidae), from 1758 to 2004, and notes about related developments in biodiversity studies. Coleop Bull 59:184–193

    Article  Google Scholar 

  196. Pearson DL, Cassola F (2007) Are we doomed to repeat history? A model of the past using tiver beetles (Coleopter: Cicindelidae) and conservation biology to anticipate the future. J Insect Conserv 11:47–59

    Article  Google Scholar 

  197. Pereira JL, Picanco MC, da Silva AA, de Barros EC, da Silva RS, Galdino TVD, Marinho CGS (2010) Ants as environmental impact bioindicators from insecticide application on corn. Sociobiol 55:153–164

    Google Scholar 

  198. Perner J, Malt S (2003) Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric Ecosyst Environ 98:169–181

    Article  Google Scholar 

  199. Pollard E, Yates TJ (1993) Monitoring butterflies for ecology and conservation. Joint Nature Conservation Committee Monks Wood, UK

    Google Scholar 

  200. Porrini C, Sabatini AG, Girotti S, Ghini S, Medrzycki P, Grillenzoni F, Bortolotti L, Gattavecchia E, Celli G (2003) Honey bees and bee products as monitors of the environmental contamination. Apicata 38:63–70

    Google Scholar 

  201. Pozzi S, Gonseth Y, Hanggi A (1998) Evaluation of dry grassland management on the Swiss occidental plateau using spider communities (Arachnida: Araneae). Rev Suisse Zool 105:465–485

    Google Scholar 

  202. Pramanik R, Sarkar K, Joy VC (1998) Toxicity screening of insecticide residues in soil using nontarget microarthropod species. J Environ Biol 19:131–139

    CAS  Google Scholar 

  203. Predergast JR (1997) Species richness covariance in higher taxa: empirical tests of biodiversity indicator concept. Ecography 20:210–216

    Article  Google Scholar 

  204. Prendergast JRR, Quinn RM, Lawton JH, Eversham BC, Goibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337

    Article  Google Scholar 

  205. Pryke JS, Samways MJ (2009) Recovery of invertebrate diversity in a rehabilitated city landscape mosaic in the heart of a biodiversity hotspot. Landsc Urban Plan 93:54–62

    Article  Google Scholar 

  206. Pryke JS, Samways MJ (2010) Significant variables for the conservation of mountain invertebrates. J Insect Conserv 14:247–256

    Article  Google Scholar 

  207. Pryke JS, Samways MJ (2012a) Importance of using many taxa and having adequate controls for monitoring impacts of fire for arthropod conservation. J Insect Conserv 16:177–185

    Article  Google Scholar 

  208. Pryke JS, Samways MJ (2012b) Differential resilience of invertebrates to fire. Aust Ecol 37:460–469

    Article  Google Scholar 

  209. Pryke JS, Samways MJ (2012c) Conservation management of complex natural forest and plantation edge effects. Landsc Ecol 27:73–85

    Article  Google Scholar 

  210. Rabea EI, Nasr HM, Badawy MEI (2010) Toxic effect and biochemical study of chlorfluazuron, oxymatrine, and spinosad on honey Bees (Apis mellifera). Arch Environ Contam Toxicol 58:722–732

    CAS  Article  PubMed  Google Scholar 

  211. Reid WV (1998) Biodiversity hotspots. Trends Ecol Evol 13:275–280

    CAS  Article  PubMed  Google Scholar 

  212. Rezac M, Rezacova V, Pekar S (2007) The distribution of purse-web Atypus spiders (Araneae: Mygalomorphae) in central Europe is constrained by microclimatic continentality and soil compactness. J Biogeogr 34:1016–1027

    Article  Google Scholar 

  213. Ricketts TH, Daily GC, Ehrlich PR (2002) Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales. Biol Conserv 103:361–370

    Article  Google Scholar 

  214. Riggins JJ, Davis CA, Hoback WW (2009) Biodiversity of belowground invertebrates as an indicator of wet meadow restoration success (Platte River, Nebraska). Rest Ecol 17:495–505

    Article  Google Scholar 

  215. Roberge J-M, Angelstam P (2004) Usefulness of the umbrella species concept as a conservation tool. Conserv Biol 18(1):76–85

    Article  Google Scholar 

  216. Rodriguez E, Fernandez-Anero FJ, Ruiz P, Campos M (2006) Soil arthropod abundance under conventional and no tillage in a Mediterranean climate. Soil Tillage Res 85:229–233

    Article  Google Scholar 

  217. Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York

    Google Scholar 

  218. Rosset V, Simaika JP, Arthaud F, Bornette G, Vallod D, Samways MJ, Oertli B (2012) Comparative assessment of scoring methods of the conservation value of biodiversity in ponds and small lakes. Aquat Conserv Mar Freshw Ecosyst 23:23–36

    Article  Google Scholar 

  219. Ruano F, Lozano C, Garcia P, Pena A, Tinaut A, Pascual F, Campos M (2004) Use of arthropods for the evaluation of the olive-orchard management regimes. Agric For Entomol 6:111–120

    Article  Google Scholar 

  220. Saha HK, Haldar P (2009) Acridids as indicators of disturbance in dry deciduous forest of West Bengal in India. Biodiv Conserv 18:2343–2350

    Article  Google Scholar 

  221. Salamon JA, Zaitsev A, Gartner S, Wolters V (2008) Soil macrofaunal response to forest conversion from pure coniferous stands into semi-natural montane forests. Appl Soil Ecol 40:491–498

    Article  Google Scholar 

  222. Samways MJ, Moore SD (1991) Influence of exotic conifer patches on grasshopper (Orthoptera) assemblages in a grassland matrix at a recreational resort Natal, South Africa. Biol Conserv 57:117–137

    Article  Google Scholar 

  223. Samways MJ, Sharratt NJ (2010) Recovery of endemic dragonflies after removal of invasive alien trees. Conserv Biol 24:267–277

    Article  PubMed  Google Scholar 

  224. Samways MJ, McGeoch MA, New TR (2010a) Insect conservation: a handbook of approaches and methods. Oxford University Press, Oxford

    Google Scholar 

  225. Samways MJ, Hitchins P, Bourquin O, Henwood J (2010b) Tropical island recovery: Cousine island, seychelles. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  226. Samways MJ, Sharratt NJ, Simaika JP (2011) Recovery of endemic river macroinvertebrates following river bank restoration. Biol Invas 13:1305–1324

    Article  Google Scholar 

  227. Sanchez-Fernandez D, Abellan P, Mellado A, Velasco J, Millan A (2006) Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the segura river basin (SE Spain). Biodiv Conserv 15:4507–4520

    Article  Google Scholar 

  228. Sauberer N, Zulka K-P, Abensperg-Traun M, Berg H-M, Bieringer G, Milasowszky N, Moser D, Plutzar C, Pollheimer M, Storch C, Tröstl R, Zechmeister HG, Grabherr G (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biol Conserv 117:181–190

    Article  Google Scholar 

  229. Scott AG, Oxford GS, Selden PA (2006) Epigeic spiders as ecological indicators of conservation value for peat. Biol Conserv 127:420–428

    Article  Google Scholar 

  230. Seyyar O, Demir H, Kar M, Duman F (2010) Argyroneta aquatica (CLERCK, 1757) (Araneae: Cybaeidae) as a biological indicator for environmental pollution of Sultan marsh National Park, Turkey. Acta Zool Bulg 62:107–112

    Google Scholar 

  231. Shelley RM, Lehtinen PT (1999) Diagnoses, synonymies and occurrences of the pantropical millipeds, Leptogoniulus sorornus (Butler) and Trigoniulus corallinus (Gervais) (Spirobolida: Pachybolidae: Trigoniulinae). J Nat Hist 33:1379–1401

    Article  Google Scholar 

  232. Sileshi G, Mafongoya PL (2006) The short–term impact of forest fire on soil invertebrates in the miombo. Biodivers Conserv 15:3153–3160

    Article  Google Scholar 

  233. Simaika JP, Samways MJ (2009) An easy-to-use index of ecological integrity for prioritizing freshwater sites and for assessing habitat quality. Biodiv Conserv 18:1171–1185

    Article  Google Scholar 

  234. Simaika JP, Samways MJ (2012) Using dragonflies to monitor and prioritize lotic systems: a South African perspective. Org Divers Evol 12(3):251–259

    Google Scholar 

  235. Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passe in the landscape era. Biol Conserv 83:247–257

    Article  Google Scholar 

  236. Skern M, Zweimuller I, Schiemer F (2010) Aquatic Heteroptera as indicators for terrestrialisation of floodplain habitats. Limnol 40:241–250

    Article  Google Scholar 

  237. Snyder BA, Hendrix PF (2008) Current and potential roles of soil macroinvertebrates (earthworms, millipedes, and isopods) in ecological restoration. Rest Ecol 16:629–636

    Article  Google Scholar 

  238. Solbrig OT (1991) Ecosystem complexity in time and space. In: Solbrig O, Nicolis G (eds) Perspectives on biological complexity. IUBS, Paris, pp 163–188

    Google Scholar 

  239. Son J, Ryoo MI, Jung J, Cho K (2007) Effects of cadmium, mercury and lead on the survival and instantaneous rate of increase of Paronychiurus kimi (Lee) (Collembola). Appl Soil Ecol 35:404–411

    Article  Google Scholar 

  240. Song MY, Leprieur F, Thomas A, Lek-Ang S, Chon TS, Lek S (2009) Impact of agricultural land use on aquatic insect assemblages in the Garonne river catchment (SW France). Aquat Ecol 43:999–1009

    CAS  Article  Google Scholar 

  241. Souza TD, Fontanetti CS (2011) Morphological biomarkers in the Rhinocricus padbergi midgut exposed to contaminated soil. Ecotoxicol Environ Saf 74:10–18

    CAS  Article  Google Scholar 

  242. Spector S, Ayzama S (2003) Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian neotropical forest-savanna ecotone. Biotropica 35:394–404

    Google Scholar 

  243. Spellerberg IF (1991) Monitoring ecological change. Cambridge University Press, Cambridge

    Google Scholar 

  244. Steiner WA (1995) Influence of air-pollution on moss-dwelling animals. 3. Terrestrial fauna, with emphasis on Oribatida and Collemebola. Acarologia 36:149–173

    Google Scholar 

  245. Summerville KS, Ritter LM, Crist TO (2004) Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: a preliminary assessment. Biol Conserv 116:9–18

    Article  Google Scholar 

  246. Summerville KS, Courard-Hauri D, Dupont MM (2009) The legacy of timber harvest: do patterns of species dominance suggest recovery of Lepidopteran communities in managed hardwood stands? Forest Ecol Manage 259:8–13

    Article  Google Scholar 

  247. Sverdrup-Thygeson A (2001) Can continuity indicator species predict species richness or red-listed species of saproxylic beetles? Biodiv Conserv 10:815–832

    Article  Google Scholar 

  248. Tabaglio V, Gavazzi C, Menta C (2009) Physico-chemical indicators and microarthropod communities as influenced by no-till, conventional tillage and nitrogen fertilisation after four years of continuous maize. Soil Tillage Res 105:135–142

    Article  Google Scholar 

  249. Thomson AJ, Callan BE, Dennis JJ (2007) A knowledge ecosystem perspective on development of web-based technologies in support of sustainable forestry. Comp Electr Agric 59:21–30

    Article  Google Scholar 

  250. Tropek R, Spitzer L, Konvicka M (2008) Two groups of epigaeic arthropods differ in colonising of piedmont quarries: the necessity of multi-taxa and life-history traits approaches in the monitoring studies. Commun Ecol 9:177–184

    Article  Google Scholar 

  251. Uehara-Prado M, Freitas AVL (2009) The effect of rainforest fragmentation on species diversity and mimicry ring composition of ithomiinea butterflies. Insect Conserv Div 2:23–28

    Article  Google Scholar 

  252. Uribe-Hernandez R, Juarez-Mendez CH, de Oca MA, Palacios-Vargas JG, Cutz-Pool L, Mejia-Recarmier BE (2010) Collembola (Hexapoda) as quality bioindicators of the hydrocarburans polluted soils in Southestern Mexico. Rev Mex Biodiv 81:153–162

    Google Scholar 

  253. Uys C, Hamer M, Slotow R (2010) Step process for selecting and testing surrogates and indicators of afrotemperate forest invertebrate diversity. PLoS One 5:e9100

    Article  PubMed  CAS  Google Scholar 

  254. Van Jaarsveld AS, Freitag S, Chown SL, Muller C, Koch S, Hull H, Bellamy C, Kruger M, Endrödy-Younga S, Mansell MW et al (1998) Biodiversity assessment and conservation strategies. Science 279:2106

    Article  PubMed  Google Scholar 

  255. Van Straalen NM, Krivolutsky DA (eds) (1996) Bioindicator systems for soil pollution. Kluwer, Dordrecht

    Google Scholar 

  256. Vandewalle M, de Bello F, Berg MP, Bolger T, Doledec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, da Silva PM, Moretti M, Niemela J, Santos P, Sattler T, Sousa JP, Sykes MT, Vanbergen AJ, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiv Conserv 19:921–2947

    Google Scholar 

  257. Vasconcelos HL, Pacheco R, Silva RC, Vasconcelos PB, Lopes CT, Costa AN, Bruna EM (2009) Dynamics of the leaf–litter arthropod fauna following fire in a neotropical woodland savanna. PLoS One 4:e7762

    Article  PubMed  CAS  Google Scholar 

  258. Vasquez-Velez LM, Bermudez C, Chacon P, Lozano-Zambrano FH (2010) Analysis of the richness of Staphylinidae (Coleoptera) on different scales of a sub-Andean rural landscape in Colombia. Biodiv Conserv 19:1917–1931

    Article  Google Scholar 

  259. Veloso VG, Sallorenzo IA, Ferreira BCA, de Souza GN (2010) Atlantorchestoidea brasiliensis (Crustacea: Amphipoda) as an indicator of disturbance caused by urbanization of a beach ecosystem. Brazilian J Oceanogr 58:13–21

    Google Scholar 

  260. Williams PH, Gaston KJ (1994) Measuring more of biodiversity: can higher-taxon richness predict wholesale species richness? Biol Conserv 67:211–217

    Google Scholar 

  261. Xu G, Schleppi P, Li M, Fu S (2009a) Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environ Pollut 157:2030–2036

    Google Scholar 

  262. Xu J, Ke X, Krogh PH, Wang Y, Luo YM, Song J (2009b) Evaluation of growth and reproduction as indicators of soil metal toxicity to the Collembolan, Sinella curviseta. Insect Sci 16:57–63

    Google Scholar 

  263. Yeates GW, Bardgett RD, Cook R, Hobbs PJ, Bowling PJ, Potter JF (1997). Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. J Appl Ecol 34:453–470

    Google Scholar 

  264. Yemshanov D, McKenney DW, de Groot P, Haugen D, Pedlar J, Sidders D, Joss B (2011). A harvest failure approach to assess the threat from an invasive species. J Environ Manag 92:205–213

    Google Scholar 

  265. Yen AL (1987) A preliminary assessment of the correlation between plant, vertebrate and Coleoptera communities in the Victorian mallee. In: Majer JD (ed) The role of invertebrates in conservation and biological survey. Department of Conservation and Land Management, Perth, pp 73–88

  266. Zeleny J (1978) Space-time fluctuations in population of aphidiphagous neuropteran (Planipennia) as indicator of specificity. Annales de Zoologie Ecologie Animale 10:359–366

    Google Scholar 

  267. Zografou K, Sfenthourakis S, Pullin A, Kati V (2009) On the surrogate value of red-listed butterflies for butterflies and grasshoppers: a case study in Grammos site of Natura 2000, Greece. J Insect Conserv 13:505–514

    Google Scholar 

Download references

Acknowledgments

JG acknowledges financial support from the IUCN/Species Survival Commission, MJS the National Research Foundation, South Africa, and JSP Mondi, UK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Justin Gerlach.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gerlach, J., Samways, M. & Pryke, J. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17, 831–850 (2013). https://doi.org/10.1007/s10841-013-9565-9

Download citation

Keywords

  • Biodiversity
  • Bioindicators
  • Invertebrates
  • Monitoring