Journal of Insect Conservation

, Volume 17, Issue 2, pp 257–267 | Cite as

Lepidopteran species richness of alpine sites in the High Sudetes Mts.: effect of area and isolation

  • Karolina Bila
  • Tomas Kuras
  • Jan Sipos
  • Pavel Kindlmann


Alpine sites in the High Sudetes Mts. host—due to their history and special climatic conditions—unique assemblages of lepidopteran species. We used data from ten of these sites to study species richness of the lepidopteran fauna and to test the effect of site area, distance to the nearest site and connectivity. For this, we used cluster analyses, species–area relationship and the incidence function model, followed by canonical analysis to test the importance of individual factors. The list of species was compiled from available literature sources with regard to recent findings. Species richness depended significantly on all geographic factors—area, distance and connectivity. Large alpine sites were more species-rich than smaller ones and remote sites differed in species composition from the others. We conclude that any decrease of the area of these sites will drastically affect the unique lepidopteran assemblages living in the High Sudetes Mts.


Central Europe Alpine habitats Island biogeography Incidence function model Species–area relationship Species richness 



We thank Vaclav Treml for providing geographical data regarding timberline, site locations and situation map of the High Sudetes Mts. (Fig. 1). We are also obliged to Jan Liska for classifying species from the Krkonose-West and Krkonose-East and Tony Dixon for English correction. This research was funded by the Ministry of Environment of the Czech Republic (projects VaV SM/6/70/05 and VaV/620/15/03), grant No. IG UP 913104041/31 and by the MSMT grants CzechGlobe—Reg.No. CZ.1.05/1.1.00/02.0073, and LC06073.


  1. Arrhenius O (1921) Species and area. J Ecol 9:95–99CrossRefGoogle Scholar
  2. Benes J, Kuras T, Konvicka M (2000) Assemblages of mountainous day-active Lepidoptera in the Hruby Jesenik Mts., Czech Republic. Biol Bratislava 55:159–167Google Scholar
  3. Boggs CL, Murphy DD (1997) Community composition in mountain ecosystems: climatic determinants of montane butterfly distributions. Glob Ecol Biogeogr 6:39–48CrossRefGoogle Scholar
  4. Buchar J, Ruzicka V (2002) Catalogue of spiders of the Czech Republic. Peres Pub, PrahaGoogle Scholar
  5. Cizek O, Bakesova A, Kuras T, Benes J, Konvicka M (2003) Vacant niche in alpine habitat: the case of an introduced population of the butterfly Erebia epiphron in the Krkonose Mountains. Acta Oecol 24:15–23. doi: 10.1016/S1146-609X(02)00004-8 CrossRefGoogle Scholar
  6. de Lattin G (1967) Grundriss der Zoogeographie [Zoogeography principles]. VEB Gustav Fisher Verlag, JenaGoogle Scholar
  7. Demek J, Kopecky J (1998) Mt. Kralicky Sneznik (Czech Republic); landforms and problem of Pleistocen glaciation. Moravian Geogr Rep 6:18–37Google Scholar
  8. Dennis RLH (1993) Butterflies and climate change. Manchester Univ. Press, ManchesterGoogle Scholar
  9. Dennis RLH, Shreeve TG (1997) Diversity of butterflies on British islands: ecological influences underlying the roles of area, isolation and the size of the faunal source. Biol J Linn Soc 60:257–275. doi: 10.1111/j.1095-8312.1997.tb01495.x CrossRefGoogle Scholar
  10. Dennis RLH, Shreeve TG, Williams WR (1995) Taxonomic differentiation in species richness gradients among European butterflies (Papilionoidea, Hesperioidea): contribution of macroevolutionary dynamics. Ecography 18:27–40. doi: 10.1111/j.1600-0587.1995.tb00116.x CrossRefGoogle Scholar
  11. Dennis RLH, Williams WR, Shreeve TG (1998) Faunal structures among European butterflies: evolutionary implications of bias for geography, endemism and taxonomic affiliation. Ecography 21:181–203. doi: 10.1111/j.1600-0587.1998.tb00672.x CrossRefGoogle Scholar
  12. Dennis RLH, Donato B, Sparks TH, Pollard E (2000) Ecological correlates of island incidence and geographical range among British butterflies. Biodivers Conserv 9:343–359. doi: 10.1023/A:1008924329854 CrossRefGoogle Scholar
  13. Dennis RLH, Olivier A, Coutsis JG, Shreeve TG (2001) Butterflies on islands in the Aegean archipelago: predicting numbers of species and incidence of species using geographical variables. Entomol Gaz 52:3–39Google Scholar
  14. Devy MS, Ganesh T, Davidar P (1998) Patterns of butterfly distribution in the Andaman islands: implications for conservation. Acta Oecol 19:527–534. doi: 10.1016/S1146-609X(99)80007-1 CrossRefGoogle Scholar
  15. Dyck HV, Matthysen E (1999) Habitat fragmentation and insect flight: a changing ‘design’ in a changing landscape? Trends Ecol Evol 14:172–174. doi: 10.1016/S0169-5347(99)01610-9 PubMedCrossRefGoogle Scholar
  16. Everitt B, Hothorn T (2006) A handbook of statistical analyses using R. Chapman and Hall/CRC, LondonCrossRefGoogle Scholar
  17. Fleishman E, Austin GT, Weiss AD (1998) An empirical test of Raport’s rule: Elevatonal gradients in mountane butterfly communities. Ecology 79:2482–2493. doi:[2482:AETORS]2.0.CO;2 Google Scholar
  18. Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Springer, Berlin, pp 167–181CrossRefGoogle Scholar
  19. Gutierrez D (1997) Importance of historical factors on species richness and composition of butterfly assemblages (Lepidoptera: Rhopalocera) in northern Iberian mountain range. J Biogeogr 24:77–88. doi: 10.1111/j.1365-2699.1997.tb00052.x CrossRefGoogle Scholar
  20. Gutierrez D, Menendez R (1998) Stability of butterfly assemblages in relation to the level of numerical resolution and altitude. Biodivers Conserv 7:967–979. doi: 10.1023/A:1008885522377 CrossRefGoogle Scholar
  21. Hanski I, Gaggiotti OE (eds) (2004) Ecology, genetics, and evolution of metapopulations. Elsevier Academic Press, San DiegoGoogle Scholar
  22. Hanski I, Moilanen A, Pakkala T, Kuussaari M (1996) The quantitative incidence function model and persistence of an endangered butterfly metapopulation. Conserv Biol 10:578–590. doi: 10.1046/j.1523-1739.1996.10020578.x CrossRefGoogle Scholar
  23. Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of migration and survival for individuals in metapopulations. Ecology 81:239–251. doi:[0239:ETPOSA]2.0.CO;2 Google Scholar
  24. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112. doi: 10.1111/j.1095-8312.1999.tb01160.x CrossRefGoogle Scholar
  25. Isaac JL, Williams SE (2007) Climate change and extinctions. In: Levin S (ed) Encyclopaedia of biodiversity. Elsevier PressGoogle Scholar
  26. Jahn A, Kozlowski S, Pulina M (1997) Masyw Snieznika: Zmiany w srodowisku przyrodniczym [Massif of Kralicky Sneznik: Changes in natural environment]. Polska agencija ekologiczna, WarszawaGoogle Scholar
  27. Jenik J (1961) Alpinska vegetace Krkonos, Kralickeho Snezniku a Hrubeho Jeseniku. Teorie anemo-orografickych ekosystemu [Alpine vegetation of the Krkonose Mts., Kralicky Sneznik and Hruby Jesenik Mts. Theory of anemo-orographical ecosystems]. Nakl CSAV, PrahaGoogle Scholar
  28. Jenik J (1998) Biodiversity of the Hercynian Mountains in central Europe. Pirineos 151(152):83–99CrossRefGoogle Scholar
  29. Jenik J, Hampel R (1992) Die Waldfreien Kammlagen des Altvatergebirges: Geschichte und Ökologie [Treeless areas in the Hruby Jesenik Mts.: History and Ecology]. Mährisch-Schlesischer Sudetengebirgsverein, Kirchheim/TeckGoogle Scholar
  30. Jenik J, Stursa J (2003) Vegetation of the Giant Mountains, Central Europe. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe (ecological studies). Springer, Berlin, pp 47–51Google Scholar
  31. Keil S, Gu HN, Dorn S (2001) Response of Cydia pomonella to selection on mobility: laboratory evaluation and field verification. Ecol Entomol 26:495–501. doi: 10.1046/j.1365-2311.2001.00346.x CrossRefGoogle Scholar
  32. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890. doi: 10.1007/s10980-008-9245-4 Google Scholar
  33. Klimes L, Klimesova J (1991) Alpine tundra in the Hruby Jesenik Mts., the Sudeten, and its tentative development in the 20th century. Preslia 63:245–268Google Scholar
  34. Krahulec F (1990) Alpine vegetation of the Kralicky Sneznik Mts. (The Sudeten Mts.). Preslia 62:307–322Google Scholar
  35. Krampl F (1992) Boreal macro-moths in Central Europe (Czechoslovakia) and their eco-geographical characteristics (Lepidoptera: Geometridae, Noctuidae, Notodontidae). Acta Entomol Bohemos 89:237–262Google Scholar
  36. Kuras T, Helova S (2002) Relict occurrence of the leaf-roller Sparganothis rubicundana in Central Europe (Lepidoptera, Tortricidae). Cas Slez Muz Opava (A) 51:199–204Google Scholar
  37. Kuras T, Benes J, Konvicka M (2000) Differing habitat affinities of four Erebia species (Lepidoptera: Nymphalidae, Satyrinae) in the Hruby Jesenik Mts, Czech Republic. Biol Bratislava 55(2):169–175Google Scholar
  38. Kuras T, Konvicka M, Benes J, Cizek O (2001) Erebia sudetica and Erebia epiphron (Lepidoptera: Nymphalidae, Satyrinae) in the Czech Republic: review of present and past distribution, conservation implications. Cas Slez Muz Opava (A) 50:57–81Google Scholar
  39. Kuras T, Benes J, Fric Z, Konvicka M (2003) Dispersal patterns of endemic alpine butterflies with contrasting population structures: Erebia epiphron and E. sudetica. Popul Ecol 45:115–123. doi: 10.1007/s10144-003-0144-x CrossRefGoogle Scholar
  40. Kuras T, Sitek J, Liska J, Mazalova M, Cerna K (2009) Motyli (Lepidoptera) narodni prirodni rezervace Praded (CHKO Jeseníky): implikace poznatku v ochrane uzemi [Lepidoptera of the Praded National Nature Reserve (Jeseniky Protected Landscape Area): conservation implications]. Cas Slez Muz Opava (A) 58:250–288Google Scholar
  41. Lastuvka Z, Liska J (2005) Seznam motylu Ceske republiky (Insecta: Lepidoptera) [Checklist of Lepidoptera of the Czech Republic (Insecta: Lepidoptera)]. Accessed 30 Jan 2009
  42. Liska J (1997) Motyli fauna Upskeho a Cernohorskeho raseliniste v Krkonosich [Lepidoptera of the Upske and Cernohorske raseliniste bogs in the Krkonose Mts.]. In: Geoekologiczne problemy Karkonoszy. Materialy z sesji naukowej w Przesiece 15.-18. X. 1997, Tom II.—Poznan, Wydawnictwo Acarus 1998, pp 93–96Google Scholar
  43. Liska J (2000) Pokus o srovnani motyli fauny subalpinskych poloh Vysokych Sudet [Attempt at comparing lepidopteran fauna of subalpine areas of the High Sudetes]. Opera Corcontica 37:286–290Google Scholar
  44. Liska J, Skyva J (1997) Historical and recent occurrence of Lepidoptera in mountains sites of the Giant Mountains (Czech Republic). Biol Bratislava 52:163–165Google Scholar
  45. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton Univ. Press, PrincetonGoogle Scholar
  46. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145. doi:[1131:SCMISE]2.0.CO;2 Google Scholar
  47. Nagy L, Grabherr G, Körner C, Thompson DBA (eds) (2003) Alpine biodiversity in Europe (ecological studies). Springer, BerlinGoogle Scholar
  48. Nieminen M (1996) Migration of moth species in a network of small islands. Oecologia 108:643–651CrossRefGoogle Scholar
  49. Oksanen J et al (2011) Vegan: Community Ecology Package. R package version 1.17-8. Accessed 20 Feb 2011
  50. Ormsby T, Napoleon EJ, Breslin P, Frunzi N (1998) Getting to know ArcView GIS. Esri Press, RedlandsGoogle Scholar
  51. Patocka J, Kulfan J (2009) Motyle Slovenska (bionomia a ekologia) [Lepidoptera of Slovakia (bionomics and ecology)]. Vydavatelstvo VEDA, SlovakiaGoogle Scholar
  52. Qureshi JA, Buschman LL, Throne JE, Ramaswamy SB (2005) Adult dispersal of Ostrinia nubilalis Hubner (Lepidoptera: Crambidae) and its implications for resistance management in Bt-maize. J Appl Entomol 129:281–292. doi: 10.1111/j.1439-0418.2005.00966.x CrossRefGoogle Scholar
  53. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  54. Real R, Vargas JM (1996) The probabilistic basis of Jaccard’s index of similarity. Syst Biol 45:380–385. doi: 10.1093/sysbio/45.3.380 CrossRefGoogle Scholar
  55. Rickleffs RE, Lovette IJ (1999) The role of island area per se and habitat diversity in the species–area relationships of four Lesser Antillean faunal groups. J Anim Ecol 68:1142–1160. doi: 10.1046/j.1365-2656.1999.00358.x CrossRefGoogle Scholar
  56. Ricklefs RE, Schluter D (eds) (1993) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, ChicagoGoogle Scholar
  57. Rosenzweig ML (1995) Species diversity in space and time. Cambridge Univ. Press, CambridgeCrossRefGoogle Scholar
  58. Ryan BF, Joiner BL, Cryer JD (2004) MINITAB Handbook: Updated for Release 14. Duxbury Press, DuxburyGoogle Scholar
  59. Schmitt T, Cizek O, Konvicka M (2005) Genetics of a butterfly relocation: large, small and introduced populations of the mountain endemic Erebia epiphron silesiana. Biol Conserv 123:11–18. doi: 10.1016/j.biocon.2004.09.018 CrossRefGoogle Scholar
  60. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508. doi: 10.1080/10635150290069913 PubMedCrossRefGoogle Scholar
  61. Sitzia T, Semenzato P, Trentanovi G (2010) Natural reforestation is changing spatial patterns of rural mountain and hill landscapes: a global overview. Forest Ecol Manag 259:1354–1362. doi: 10.1016/j.foreco.2010.01.048 CrossRefGoogle Scholar
  62. Soffner J (1960) Schmetterlinge aus dem Riesengebirge [Lepidoptera of the Giant Mts.]. Zeitschrift der Wiener Entomologischen Gesellschaft 45:70–91Google Scholar
  63. Soukupova L, Kocianova M, Jenik J, Sekyra J (eds) (1995) Arctic—alpine tundra in the Krkonose, the Sudetes. Opera Corcontica 32:5–88Google Scholar
  64. Strathdee AT, Bale JS (1998) Life on the edge: insect ecology in Arctic environments. Annu Rev Entomol 43:85–106. doi: 10.1146/annurev.ento.43.1.85 PubMedCrossRefGoogle Scholar
  65. Treml V, Banas M (2000) Alpine timberline in the High Sudetes. Acta Univ Carol Geogr 35:83–99Google Scholar
  66. Ulrich W, Buszko J (2003) Species-area relationships of butterflies in Europe and species richness forecasting. Ecography 26:365–373CrossRefGoogle Scholar
  67. Ulrich W, Buszko J (2005) Detecting biodiversity hotspots using species–area and endemics–area relationships: the case of butterflies. Biodivers Conserv 14:1977–1988. doi: 10.1007/s10531-004-2526-6 CrossRefGoogle Scholar
  68. Varga Z, Schmitt T (2008) Types of oreal and oreotundral disjunctions in the western Palearctic. Biol J Linn Soc 93:415–430. doi: 10.1111/j.1095-8312.2007.00934.x CrossRefGoogle Scholar
  69. Whittaker RJ (1999) Island biogeography. Ecology, evolution, and conservation. Oxford Univ. Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Karolina Bila
    • 1
    • 2
  • Tomas Kuras
    • 1
  • Jan Sipos
    • 1
  • Pavel Kindlmann
    • 2
    • 3
  1. 1.Faculty of SciencePalacky University OlomoucOlomoucCzech Republic
  2. 2.Department of Biodiversity ResearchGlobal Change Research Centre AS CRCeske BudejoviceCzech Republic
  3. 3.Institute of Environmental StudiesCharles UniversityPrague 2Czech Republic

Personalised recommendations