Advertisement

Journal of Insect Conservation

, Volume 17, Issue 2, pp 245–255 | Cite as

Distribution of the Eastern knapweed fritillary (Melitaea ornata Christoph, 1893) (Lepidoptera: Nymphalidae): past, present and future

  • János P. Tóth
  • Katalin Varga
  • Zsolt Végvári
  • Zoltán Varga
ORIGINAL PAPER

Abstract

Climatic change during the Quaternary resulted in periodical range restrictions and expansions in most temperate species. Although some repetitive patterns have been supported, it became obvious that species’ responses might be rather specific and may also depend on habitat preferences of the species in question. Distribution of Melitaea ornata, a little known fritillary species is analysed on different time scales using MaxEnt software. Using the results of genitalia morphometry and the predicted potential refugia during the Last Glacial Maximum (LGM), we reconstructed probable re-colonisation routes. We also predicted changes in the potential area for 2080. The present distribution fits well the known occurrence data except for the Iberian Peninsula and North-Africa where the species is missing. Based on our predictions, temperate areas seem to be less suitable for the species. We proposed two hypotheses to explain this pattern: a less probable recent extinction from Iberia and a more supported historical explanation. Predicted distribution during the LGM mainly fits to widely accepted refugia. Europe was probably re-colonised from two main sources, from the Apennine peninsula and from the Balkans which was probably connected to the Anatolian refugia. Populations of the Levant region and in the Elburs Mts. do not show any significant expansion. Further studies are necessary in the case of the predicted Central Asian refugia. Predictions for 2080 show a northward shift and some extinction events in the Mediterranean region. Core areas are identified which might have a potential for expansion including southern Russia, Hungary and possibly Provence in France. Predicted northward area shifts are only possible if the potential leading edge populations and habitats of the species can be preserved.

Keywords

Palearctic Last Glacial Maximum MaxEnt Climate change Species distribution model 

Notes

Acknowledgments

Thanks for Gennadiy V. Kuznetsov for the useful information and the coordinates form the Volgograd region (Russia). We thank to Dr. Axel Hausmann (Zoological State Collection in Munich), Dr. Zsolt Bálint (Hungarian Natural History Museum) for borrowing valuable museum specimens for our studies. Useful suggestions and corrections of Leonardo Dapporto and an anonymous referee are highly appreciated. The survey was supported by the OTKA (K75696).

References

  1. Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Change Biol 13(7):1368–1385CrossRefGoogle Scholar
  2. Benito Garzón M, Sánchez de Dios R, Sáinz Ollero H (2007) Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30(1):120–134Google Scholar
  3. Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of North European trees. J Biogeogr 18(1):103–115CrossRefGoogle Scholar
  4. Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J Biogeogr 35(3):464–482CrossRefGoogle Scholar
  5. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007a) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3(2):261–277CrossRefGoogle Scholar
  6. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007b) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Clim Past 3(2):279–296CrossRefGoogle Scholar
  7. Cormont A, Malinowska AH, Kostenko O, Radchuk V, Hemerik L, WallisDeVries MF, Verboom J (2011) Effect of local weather on butterfly flight behaviour, movement, and colonization: significance for dispersal under climate change. Biodivers Conserv 20(3):483–503CrossRefGoogle Scholar
  8. Dapporto L, Bruschini C (2012) Invading a refugium: post glacial replacement of the ancestral lineage of a Nymphalid butterfly in the West Mediterranean. Org Divers Evol 12(1):39–49Google Scholar
  9. Dapporto L, Habel JC, Dennis RLH, Schmitt T (2011a) The biogeography of the western Mediterranean: elucidating contradictory distribution patterns of differentiation in Maniola jurtina (Lepidoptera: Nymphalidae). Biol J Linn Soc 103(3):571–577CrossRefGoogle Scholar
  10. Dapporto L, Schmitt T, Vila R, Scalercio S, Biermann H, Dinca V, Gayubo SF, Gonzalez JA, Lo Cascio P, Dennis RLH (2011b) Phylogenetic island disequilibrium: evidence for ongoing long-term population dynamics in two Mediterranean butterflies. J Biogeogr 38(5):854–867CrossRefGoogle Scholar
  11. Davies ZG, Wilson RJ, Coles S, Thomas CD (2006) Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. J Anim Ecol 75(1):247–256PubMedCrossRefGoogle Scholar
  12. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58PubMedCrossRefGoogle Scholar
  13. de Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Chang 19(2):306–315CrossRefGoogle Scholar
  14. de Lattin G (1967) Grunddriß der zoogeographie, vol 54, vol 1. Gustav Fischer Verlag, JenaGoogle Scholar
  15. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105(18):6668–6672PubMedCrossRefGoogle Scholar
  16. Elith J, Graham A, Dudík M, Ferrier S, Guisan A, Hijmans, Huettmann F, Leathwick, Lehmann A, Li J, Lohmann, Loiselle, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMcC, Townsend Peterson A, Phillips, Richardson K, Scachetti-Pereira R, Schapire, Soberón J, Williams S, Wisz, Zimmermann (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151CrossRefGoogle Scholar
  17. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Method Ecol Evol 1:330–342Google Scholar
  18. Fibiger M (1990) Noctuidae Europaeae: Noctuinae I. Entomological Press, SorøGoogle Scholar
  19. Fibiger M (1997) Noctuidae Europaeae: Noctuinae III. Noctuidae Europaeae. Entomological Press, SorøGoogle Scholar
  20. Fløjgaard C, Normand S, Skov F, Svenning J-C (2009) Ice age distributions of European small mammals: insights from species distribution modelling. J Biogeogr 36(6):1152–1163CrossRefGoogle Scholar
  21. Habel J, Lens L, Rödder D, Schmitt T (2011) From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the Marbled White butterfly Melanargia galathea. BMC Evol Biol 11(1):215PubMedCrossRefGoogle Scholar
  22. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32CrossRefGoogle Scholar
  23. Hesselbarth G, Oorschot HV, Wagener S (1995) Die Tagfalter der Turkei unter Berücksichtigung der angrenzenden Länder: (Lepidoptera Papilionoidea and Hesperioidea) vol 2. Goecke & Evers, BocholdGoogle Scholar
  24. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58(3):247–276Google Scholar
  25. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68(1–2):87–112CrossRefGoogle Scholar
  26. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405(6789):907–913PubMedCrossRefGoogle Scholar
  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978CrossRefGoogle Scholar
  28. Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25(3):153–160PubMedCrossRefGoogle Scholar
  29. Jakšić P (2011) Butterfly species (Lepidoptera: Hesperioidea and Papilionoidea) new to the Serbian fauna. Biol Nyssana 2(1):29–34Google Scholar
  30. Korshunov Y, Gorbunov P (1995) Butterflies of the Asian part of Russia. Ural University Press, YekaterinburgGoogle Scholar
  31. Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz, HalleGoogle Scholar
  32. Kuznetsov GV (2010) About finding Melitaea telona Fruhstorfer, 1908 (Lepidoptera: Nymphalidae) in Volgograd region. Caucasian Ent Bull 6(2):193–194Google Scholar
  33. Kuznetsov GV (2011) Some data about biology Melitaea telona Fruhstorfer, 1908 and Melitaea robertsi uvarovi Gorbunov, 1995 (Lepidoptera: Nymphalidae) on Volgograd region. Caucasian Ent Bull 7(1):83–84Google Scholar
  34. Leneveu J, Chichvarkhin A, Wahlberg N (2009) Varying rates of diversification in the genus Melitaea (Lepidoptera: Nymphalidae) during the past 20 million years. Biol J Linn Soc 97:346–361CrossRefGoogle Scholar
  35. Leroy SAG, Arpe K (2007) Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J Biogeogr 34(12):2115–2128CrossRefGoogle Scholar
  36. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462(7276):1052–1055PubMedCrossRefGoogle Scholar
  37. Menéndez R, González-Megías A, Collingham Y, Fox R, Roy DB, Ohlemüller R, Thomas CD (2007) Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecol Soc Am 88(3):605–611Google Scholar
  38. Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher HM, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith SJ, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  39. Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning J-C (2011) Postglacial migration supplements climate in determining plant species ranges in Europe. Proc R Soc B Biol 278(1725):3644–3653CrossRefGoogle Scholar
  40. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  41. Pecsenye K, Bereczki J, Tóth A, Meglécz E, Peregovits L, Juhász E, Varga Z (2007) Connection of the population structure and genetic variability in some protected butterfly species. [A populációstruktúra és a genetikai variabilitás kapcsolata védett nappalilepke-fajainknál.]. In: Forró L (ed) The genesis of the wildlife of the Carpathian basin. The zoological values and faunal genesis. [A Kárpát-medence állatvilágának kialakulása. A Kárpát-medence állattani értékei és faunájának kialakulása.]. Hungarian Natural History Museum [Magyar Természettudományi Múzeum], Budapest, pp 241–260Google Scholar
  42. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175CrossRefGoogle Scholar
  43. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259CrossRefGoogle Scholar
  44. Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23(10):564–571PubMedCrossRefGoogle Scholar
  45. Reinig W (1950) Chorologische Voraussetzungen für die Analyse von Formenkreisen. In: Peus F (ed) Syllegomena biologica Festschrift zum 80. Geburtstage von Herrn Pastor Dr. Med. h.c. Otto Kleinschmidt, Lutherstadt Wittenberg, am 13. Dezember 1950. Geest & Portig, Leipzig, p 471Google Scholar
  46. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60PubMedCrossRefGoogle Scholar
  47. Russell P, Pamperis LN (2011) A reassessment of the presence of Melitaea phoebe ([Denis & Schiffermüller], 1775)(Lepidoptera:Nymphalidae) in the Aegean islands. Ent Gaz 62:139–158Google Scholar
  48. Russell P, Pateman J, Gascoigne-Pees M, Tennent WJ (2005) Melitaea emipunia (Verity, 1919) stat. nov: a hitherto unrecognised butterfly species from Europe (Lepidoptera: Nymphalidae). Ent Gaz 56(2):67–70Google Scholar
  49. Russell P, Tennent WJ, Pateman J, Varga Z, Benyamini D, Pe’er G, Bálint Z, Gascoigne-Pees M (2007) Further investigations into Melitaea telona Frushstorfer, 1908 (= ogygia Frushstorfer, 1908 = emipunica Verity, 1919) (Lepidoptera: Nymphalidae), with observations on biology and distribution. Ent Gaz 58:137–166Google Scholar
  50. Scheldeman X, Zonneveld Mv (2010) Training manual on spatial analysis of plant diversity and distribution. Bioversity International, RomeGoogle Scholar
  51. Schmitt T (2007) Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front Zool 4:11PubMedCrossRefGoogle Scholar
  52. Schmitt T, Seitz A (2001) Allozyme variation in Polyommatus coridon (Lepidoptera: Lycaenidae): identification of ice-age refugia and reconstruction of post-glacial expansion. J Biogeogr 28(9):1129–1136CrossRefGoogle Scholar
  53. Schmitt T, Seitz A (2002) Postglacial distribution area expansion of Polyommatus coridon (Lepidoptera: Lycaenidae) from its Ponto-Mediterranean glacial refugium. Heredity 89(1):20–26PubMedCrossRefGoogle Scholar
  54. Settele J, Kudrna O, Harpke A, Kühn I, Sway Cv, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, Halder Iv, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies. Pensoft, MoscowGoogle Scholar
  55. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16(11):608–613CrossRefGoogle Scholar
  56. Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B Bio 277(1682):661–671CrossRefGoogle Scholar
  57. Svenning JC, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96(6):1117–1127CrossRefGoogle Scholar
  58. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293PubMedCrossRefGoogle Scholar
  59. Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7(4):453–464PubMedCrossRefGoogle Scholar
  60. Tobin PC, Nagarkatti S, Loeb G, Saunders MC (2008) Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob Change Biol 14(5):951–957CrossRefGoogle Scholar
  61. Tóth JP, Varga Z (2010) Morphometric study on the genitalia of sibling species Melitaea phoebe and M. telona (Lepidoptera: Nymphalidae). Acta Zool Acad Sci H 56(3):273–282Google Scholar
  62. Tóth JP, Varga Z (2011) Inter- and intraspecific variation in the genitalia of the ‘Melitaea phoebe group’ (Lepidoptera, Nymphalidae). Zool Anz 250(3):258–268CrossRefGoogle Scholar
  63. Tóth JP, Bereczki J, Spring N, Varga Z (2011) Dispersal ability and habitat selection in Melitaea telona kovacsi Varga, 1967 and M. phoebe (Denis & Schiffermüller, 1775) (Nymphalidae) in steppe grassland. Nota Lepidopterol 33(2):199–207Google Scholar
  64. van Swaay C, Cuttelod A, Collins S, Maes D, Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2011) European red list of butterflies. Publications Office of the European Union, LuxembourgGoogle Scholar
  65. VanDerWal J, Shoo LP, Graham C, William SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220(4):589–594CrossRefGoogle Scholar
  66. Varga Z (1967) A Melitaea phoebe délkelet-európai populációinak taxonómiai elemzése, két új alfaj leírásával. Acta Biol Debrecina 5:119–137Google Scholar
  67. Varga Z (1995) Geographical patterns of biological diversity in the Palaearctic region and the Carpathian Basin. Acta Zool Acad Sci H 41(2):71–92Google Scholar
  68. Varga Z (1996) New species and subspecies of Dichagyris, Chersotis and Rhyacia (lepidoptera, noctuidae) from Central Asia. Acta Zool Acad Sci H 42(3):195–230Google Scholar
  69. Varga Z (2007) The Kovács’ Fritillary (Melitaea telona kovacsi Varga, 1967) in the Carpathian basin. [A Kovács-tarkalepke (Melitaea telona kovacsi Varga, 1967) a Kárpát-medencében.]. In: László F (ed) The genesis of the wildlife of the Carpathian basin. The zoological values and faunal genesis. [A Kárpát-medence állatvilágának kialakulása. A Kárpát-medence állattani értékei és faunájának kialakulása.]. Hungarian Natural History Museum [Magyar Természettudományi Múzeum], Budapest, pp 143–152Google Scholar
  70. Varga Z (2010) Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in eastern central Europe. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, LondonGoogle Scholar
  71. Varga Z, Szabó S, Kozma P (2005) Melitaea ogygia kovacsi Varga, 1967 (Lepidoptera, Nymphalidae) in the Pannonian region: taxonomy, bionomy, conservation biology. Studies on the ecology and conservation of butterflies in Europe, vol 2. UFZ Leipzig-HalleGoogle Scholar
  72. Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP (2007) Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2(7):e563PubMedCrossRefGoogle Scholar
  73. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395PubMedCrossRefGoogle Scholar
  74. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611Google Scholar
  75. Willis KJ, van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Q Sci Rev 23(23–24):2369–2387CrossRefGoogle Scholar
  76. Willis SG, Hill JK, Thomas CD, Roy DB, Fox R, Blakeley DS, Huntley B (2009) Assisted colonization in a changing climate: a test-study using two U.K. butterflies. Conserv Lett 2(1):46–52CrossRefGoogle Scholar
  77. Wilson RJ, Davies ZG, Thomas CD (2009) Modelling the effect of habitat fragmentation on range expansion in a butterfly. Proc R Soc B 276(1661):1421–1427PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • János P. Tóth
    • 1
  • Katalin Varga
    • 2
  • Zsolt Végvári
    • 3
  • Zoltán Varga
    • 1
  1. 1.Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
  2. 2.Department of EcologyUniversity of DebrecenDebrecenHungary
  3. 3.Department of Conservation Zoology, Hortobágy National Park DirectorateUniversity of DebrecenDebrecen Sumen u.2Hungary

Personalised recommendations