Skip to main content

Advertisement

Log in

Extinction trends of threatened invertebrates in peninsular Spain

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Using information from two recently published atlases of threatened invertebrate species in peninsular Spain, we examined the climatic, land use and geographic characteristics of the 100 km2 UTM cells with most likelihood of suffering extinctions (extinction cells), as well as the attributes of the species prone to population extinctions. Extinction cells have had significantly (1) lower precipitation values, (2) higher temperatures, (3) higher percentages of anthropic land uses or (4) higher rates of anthropization during the last 20 years than the remaining cells. Nevertheless, probable extinctions may occur under a wide range of climatic and anthropization change rates and these variables can only explain a low proportion (~5 %) of variability in the occurrence or number of extinction cells. Aquatic species seem to suffer higher local extinction rates than terrestrial species. Interestingly, many invertebrate species with approximately 25 or less occurrence cells are on a clear trajectory towards extinction. These results outline the difficulties and uncertainties in relating probable population extinctions with climatic and land use changes in the case of invertebrate data. However, they also suggest that a third of the considered Spanish threatened species could have lost some of their populations, and that current conservation efforts are insufficient to reverse this tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abellán P, Sánchez-Fernández D, Velasco J, Millán A (2007) Effectiveness of protected area networks in representing freshwater biodiversity: the case of a Mediterranean river basin (south-eastern Spain). Aquat Conserv 17:361–374

    Article  Google Scholar 

  • Araújo MB, Lobo JM, Moreno JC (2007) The effectiveness of Iberian protected areas in conserving terrestrial biodiversity. Conserv Biol 21:1423–1432

    Article  PubMed  Google Scholar 

  • Berglund H, Jonsson BG (2005) Verifying an extinction debt among lichens and fungi in Northern Swedish Boreal Forests. Conserv Biol 19:338–348

    Article  Google Scholar 

  • Bräutigam A, Jenkins M (eds) (2001) The red book: the extinction crisis face to face. IUCN and CEMEX S.A, México

    Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor C (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Cardoso P, Arnedo MA, Triantis KA, Borges PAV (2010) Drivers of diversity in Macaronesian spiders and the role of species extinctions. J Biogeogr 37:1034–1046

    Article  Google Scholar 

  • Cardoso P, Borges PAV, Triantis KA, Ferrández MA, Martín JL (2011) Adapting the IUCN Red List criteria for invertebrates. Biol Conserv 144:2432–2440

    Article  Google Scholar 

  • Cardoso P, Borges PAV, Triantis KA, Ferrández MA, Martín JL (2012) The underrepresentation and misrepresentation of invertebrates in the IUCN Red List. Biol Conserv. doi:10.1016/j.biocon.2012.02.011

  • Carpaneto GM, Mazziotta A, Valerio L (2007) Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae). Divers Distrib 13:903–919

    Article  Google Scholar 

  • Clark-Labs (2000) Global change data archive. 1 km global elevation model. CD-Rom, Clark University

    Google Scholar 

  • Cox PA, Elmqvist T (2000) Pollinator extinction in the pacific islands. Conserv Biol 15:1237–1239

    Article  Google Scholar 

  • Daily GC, Ehrlich PR (1995) Preservation of biodiversity in small rainforest patches: rapid evaluations using butterfly trapping. Biodivers Conserv 4:35–55

    Article  Google Scholar 

  • Daily GC, Ehrlich PR, Sánchez-Azofeifa GA (2001) Countryside biogeography: use of human-dominated habitat by the avifauna of southern Costa Rica. Ecol Appl 11:1–13

    Article  Google Scholar 

  • Darwall WRT, Vié JC (2005) Identifying important sites for conservation of freshwater biodiversity: extending the species-based approach. Fisheries Manag Ecol 12:287–293

    Article  Google Scholar 

  • Desender K, Turin H (1989) Loss of habitats and changes in the composition of the ground and tiger beetle fauna in four West European countries since 1950 (Coleoptera: Carabidae, cicindelidae). Biol Conserv 48:277–294

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496

    Article  PubMed  Google Scholar 

  • Diniz-Filho JAF, De Marco Jr P, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Diver 3:172–179

    Google Scholar 

  • Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19:1030–1036

    Article  Google Scholar 

  • Europarc (2008) Mapa de áreas protegidas de España. Observatorio Europarc-España, Madrid. Available at: www.europarc-conservacion.es/

  • Evans HE (1993) Life on a little-known planet: a biologist’s view of insects and their world. Lyons and Burford, New York

    Google Scholar 

  • Gaston KJ, Mound LA (1993) Taxonomy, hypothesis testing and the biodiversity crisis. Proc R Soc Lond B 251:139–142

    Article  Google Scholar 

  • Goodman D (1987) The demography of chance extinction. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, New York, pp 11–34

    Chapter  Google Scholar 

  • González-Oreja JA (2008) The encyclopedia of life vs. the brochure of life: exploring the relationships between the extinction of species and the inventory of life on Earth. Zootaxa 1965:61–68

    Google Scholar 

  • Herbert ME, McIntyre PB, Doran PJ, Allan JD, Abel R (2010) Terrestrial reserve networks do not adequately represent aquatic ecosystems. Conserv Biol 24:1002–1011

    Article  PubMed  Google Scholar 

  • Hernández-Manrique OL, Numa C, Verdú JR, Galante E, Lobo JM (2012) Current protected sites do not allow the representation of endangered invertebrates: the Spanish case. Insect Conserv Divers. doi:10.1111/j.1752-4598.2011.00175.x

  • Hijmans RJ, Cameron S, Parra JL, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • IUCN (2010) Numbers of threatened species by major groups of organisms (1996–2009). IUCN Red List version 2010. 3rd edn.

  • Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. P Natl Acad Sci USA 101:8251–8253

    Article  CAS  Google Scholar 

  • Kendall RJ, Lacher TE, Cobb GP, Cox SD (2010) Wildlife toxicology: emerging contaminant and biodiversity issues. Taylor and Francis/CRC Press, Boca Raton

    Book  Google Scholar 

  • Kerr JT, Currie DJ (1995) Effects of human activity on global extinction risk. Conserv Biol 9:1528–1538

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  Google Scholar 

  • Lande R (1998) Demographic stochasticity and Allee effect on a scale with isotropic noise. Oikos 83:353–358

    Article  Google Scholar 

  • Laurence WL (2010) Habitat destruction: death by a thousand cuts. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 73–87

    Chapter  Google Scholar 

  • Lawton JH, May RM (1995) Extinction rates. Oxford University Press, Oxford

    Google Scholar 

  • Leidner AK, Neel MC (2011) Taxonomic and geographic patterns of decline for threatened and endangered species in the United States. Conserv Biol 25:716–725

    Article  PubMed  Google Scholar 

  • Lobo JM (2001) Decline of roller dung beetle (Scarabaeinae) populations in the Iberian Peninsula during the 20th century. Biol Conserv 97(1):43–50

    Article  Google Scholar 

  • Lubchenco J, Olson AM, Brubaker LB, Carpenter SR, Holland MM, Hubbell SP, Levin SA, MacMahon JA, Matson PA, Melillo JM, Mooney HA, Peterson CH, Pulliam HR, Real LA, Regal PJ, Risser PG (1991) The sustainable biosphere initiative: an ecological research agenda. Ecology 72:371–412

    Article  Google Scholar 

  • Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, Akçakaya HR, Leader-Williams N, Milner-Gulland EJ, Stuart SN (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442

    Article  PubMed  Google Scholar 

  • Maclean IMD, Wilson RJ (2011) Recent ecological responses to climate change support predictions of high extinction risk. P Natl Acad Sci USA 108:12337–12342

    Article  CAS  Google Scholar 

  • Millán A, Velasco J, Gutiérrez-Cánovas C, Arribas P, Picazo F, Sánchez-Fernández D, Abellán P (2011) Mediterranean saline streams in southeast Spain: what do we know? J Arid Environ 75:1352–1359

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • Martínez M, Psuty N, Heslenfeld P, Jungerius P, Klijn J (2008) European coastal dunes: ecological values, threats, opportunities and policy development. In: Caldwell MM, Heldmaier G, Lange OL, Mooney HA, Schulze ED, Sommer U (eds) Coastal dunes, vol 171. Ecological Studies. Springer, Berlin, pp 335–351

    Chapter  Google Scholar 

  • Mawdsley NA, Stork N (1995) Species extinctions in insects: ecological and biogeographical considerations. In: Harrington R, Stork N (eds) Insects in a changing environment. Academic Press, London, pp 321–369

    Google Scholar 

  • McIntyre S, Hobbs R (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13:1282–1292

    Article  Google Scholar 

  • Medail F, Quezel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean basin. Ann Mo Bot Gard 84:112–127

    Article  Google Scholar 

  • Mehtälä J, Vuorisalo T (2007) Conservation policy and the EU Habitats Directive: favourable conservation status as a measure of conservation success. Eur Env 17:363–375

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Moore NW (1991) Observe extinction or conserve diversity? In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 1–8

    Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  PubMed  CAS  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    Article  PubMed  CAS  Google Scholar 

  • Pimm S, Raven P, Peterson A, ÅžekercioÄŸlu ÃaH, Ehrlich PR (2006) Human impacts on the rates of recent, present, and future bird extinctions. P Natl Acad Sci USA 103:10941–10946

    Article  CAS  Google Scholar 

  • Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219

    Article  PubMed  CAS  Google Scholar 

  • Rao M, Larsen T (2010) Ecological consequences of extinction. Lessons in conservation. American Museum of Natural History, New York

    Google Scholar 

  • Reyjol Y, Hugueny B, Pont D, Bianco PG, Beier U, Caiola N, Casals F, Cowx I, Economou A, Ferreira T, Haidvogl G, Noble R, De Sostoa A, Vigneron T, Virbickas T (2007) Patterns in species richness and endemism of European freshwater fish. Global Ecol Biogeogr 16:65–75

    Article  Google Scholar 

  • Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conserv Biol 13:1220–1222

    Article  Google Scholar 

  • Samways MJ (2005) Insect diversity conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sánchez-Fernández D, Bilton DT, Abellán P, Ribera I, Velasco J, Millán A (2008) Are the endemic water beetles of the Iberian Peninsula and the Balearic Islands effectively protected? Biol Conserv 141:1612–1627

    Article  Google Scholar 

  • Sárospataki M, Novák J, Molnár V (2005) Assessing the threatened status of bumble bee species (Hymenoptera: Apidae) in Hungary, Central Europe. Biodivers Conserv 14:2437–2446

    Article  Google Scholar 

  • Saunders DL, Meeuwig JJ, Vincent ACJ (2002) Freshwater protected areas: strategies for conservation. Conserv Biol 16:30–41

    Article  Google Scholar 

  • Stokstad E (2007) The case of the empty hives. Science 316:970–972

    Article  PubMed  CAS  Google Scholar 

  • Strayer DL (2006) Challenges for freshwater invertebrate conservation. J N Am Benthol Soc 25:271–287

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA (1986) RSNC guide to butterflies of the British Isles. London

  • Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos T R Soc B 360:339–357

    Article  CAS  Google Scholar 

  • Turin H, den Boer PJ (1988) Changes in the distribution of carabid beetles in The Netherlands since 1880. II. Isolation of habitats and long-term time trends in the occurence of carabid species with different powers of dispersal (Coleoptera, Carabidae). Biol Conserv 44:179–200

    Article  Google Scholar 

  • UNEP, DEWA (2004) Freshwater in Europa. Facts figures and maps. Division of Early Warning and Assessment (DEWA). United Nations Environment Programme, Geneve

    Google Scholar 

  • van der Meulen F, Salman AHPM (1996) Management of Mediterranean coastal dunes. Ocean Coast Manage 30:177–195

    Article  Google Scholar 

  • van Swaay CAM (1990) An assessment of the changes in butterfly abundance in The Netherlands during the 20th century. Biol Conserv 52:287–302

    Article  Google Scholar 

  • Verdú JR, Galante E (2008) Atlas de los Invertebrados Amenazados de España (Especies En Peligro Crítico y En Peligro). Dirección General para la Biodiversidad. Ministerio de Medio Ambiente, Medio Rural y Marino, Madrid

    Google Scholar 

  • Verdú JR, Numa C, Galante E (2011) Atlas y Libro Rojo de los Invertebrados amenazados de España (Especies Vulnerables). Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, Medio Rural y Marino, Madrid

    Google Scholar 

  • Williams N (2009) Red list species update fears. Curr Biol 19:1013–1014

    Article  Google Scholar 

  • Zamin TJ, Baillie JE, Miller RM, Rodriguez JP, Ardid A, Collen B (2010) National red listing beyond the 2010 target. Conserv Biol 24:1012–1020

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by project Atlas of the Threatened Invertebrates of Spain Ministerio de Medio Ambiente y Medio Rural y Marino. Special thanks to Dr Ángel M. Felicísimo and SECAD Geonetwork for the digital climatic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Lobo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Manrique, O.L., Sanchez-Fernandez, D., Numa, C. et al. Extinction trends of threatened invertebrates in peninsular Spain. J Insect Conserv 17, 235–244 (2013). https://doi.org/10.1007/s10841-012-9502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-012-9502-3

Keywords

Navigation