Journal of Insect Conservation

, Volume 16, Issue 6, pp 857–865 | Cite as

Microhabitat selection in a grassland butterfly: a trade-off between microclimate and food availability

  • Benjamin Krämer
  • Immo Kämpf
  • Jan Enderle
  • Dominik Poniatowski
  • Thomas Fartmann


Understanding the factors that determine habitat quality is vital to ensuring appropriate habitat management. The main objective of this study was to assess the microhabitat preferences of egg-depositing females of the Grizzled Skipper (Pyrgus malvae) in calcareous grasslands of the Diemel Valley (Central Germany) for defining habitat quality. Based on this knowledge, we make management recommendations for the conservation of this threatened species. P. malvae generally preferred open and warm oviposition sites. However, there were considerable differences in the environmental conditions, depending on the selected host plant. On the small Potentilla tabernaemontani plants that grew in sparse vegetation with low-growing turf, mostly only one egg was found per plant. In contrast, occupied Agrimonia eupatoria host plants were larger and more prominent, regularly having more than one egg, and grew at sites with a taller and denser vegetation. The observed oviposition pattern reflects a trade-off between microclimate and food availability: Usually, occupied P. tabernaemontani plants grow under favourable microclimatic conditions. However, during hot years the risk of desiccation is high, leading to food shortage. In contrast, A. eupatoria generally provides more biomass, thrives on deeper soils and the vegetation has a cooler microclimate: hence, food shortage is somewhat unlikely. To meet the described habitat requirements of P. malvae, traditional rough grazing by sheep and goats seemed to be the most appropriate land management strategy. The re-introduction of coppicing in woodlands, particularly adjacent to calcareous grasslands, would also be beneficial.


Calcareous grassland Habitat quality Habitat requirements Host plant selection Oviposition Pyrgus malvae 



We are very grateful to Kerstin Gonschorrek, Anna Jess, Johanna Römer and Merle Streitberger for support during field work. Moreover, we would like to thank Gabriel Hermann and one anonymous reviewer for valuable comments on an earlier version of the manuscript.


  1. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and meta-population structure—the key for successful management of pre-Alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185CrossRefGoogle Scholar
  2. Anthes N, Fartmann T, Hermann G (2008) The Duke of Burgundy butterfly and its dukedom: larval niche variation in Hamearis lucina across Central Europe. J Insect Conserv 12:3–14. doi: 10.1007/s10841-007-9084-7 CrossRefGoogle Scholar
  3. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, Jeffcoate S (2001) The millenium atlas of butterflies in Britain and Ireland. Oxford University Press, OxfordGoogle Scholar
  4. Bates D, Maechler M, Dai B (2008) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-28.
  5. Bergström A, Janz N, Nylin S (2006) Putting more eggs in the best basket: clutch-size regulation in the comma butterfly. Ecol Entomol 31:255–260CrossRefGoogle Scholar
  6. Bos FG, Bosveld MA, Groenendijk DG, van Swaay CAM, Wynhoff I (2006) De dagvlinders van Nederland. Verspreiding en bescherming. Nederlandse Fauna 7. KNNV Uitgeverij, LeidenGoogle Scholar
  7. Bourn NAD, Thomas JA (2002) The challenge of conserving grassland insects at the margins of their range in Europe. Biol Conserv 104:285–292CrossRefGoogle Scholar
  8. Brereton TM, Bourn NAD, Warren MS (1998) Species action plan. Grizzled Skipper (Pyrgus malvae). Butterfly Conservation, WarehamGoogle Scholar
  9. Clarke RT, Thomas JA, Elmes GW, Hochberg ME (1997) The effects of spatial patterns on habitat quality on community dynamics within a site. P Roy Soc Lond B Biol 264:347–354CrossRefGoogle Scholar
  10. Courtney SP (1982) Coevolution of pierid butterflies and their cruciferous host plants. IV. Host apparency and Anthocharis cardamines oviposition. Oecologia 52:258–265CrossRefGoogle Scholar
  11. Courtney SP (1984) Habitat versus foodplant selection. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, London, pp 89–90Google Scholar
  12. Dennis RLH, Shreeve TG, van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966CrossRefGoogle Scholar
  13. Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 1, Tagfalter I. Eugen Ulmer, StuttgartGoogle Scholar
  14. Ehrlich PR, Hanski I (eds) (2004) On the wings of checkerspots: a model system for population biology. Oxford University Press, OxfordGoogle Scholar
  15. Eichel S, Fartmann T (2008) Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area. J Insect Conserv 12:677–688. doi: 10.1007/s10841-007-9110-9 CrossRefGoogle Scholar
  16. Fartmann T (2004) Die Schmetterlingsgemeinschaften der Halbtrockenrasen-Komplexe des Diemeltales. Biozönologie von Tagfaltern und Widderchen in einer alten Hudelandschaft. Abh Westf Mus Naturk 66:1–256Google Scholar
  17. Fartmann T (2006) Oviposition preferences, adjacency of old woodland and isolation explain the distribution of the Duke of Burgundy butterfly (Hamearis lucina) in calcareous grasslands in central Germany. Ann Zool Fenn 43:335–347Google Scholar
  18. Fox R, Asher J, Brereton T, Roy D, Warren M (2006) The state of butterflies in Britain and Ireland. Information Press, OxfordGoogle Scholar
  19. García-Barros E, Fartmann T (2009) Butterfly oviposition: sites, behaviour and modes. In: Settele J, Konvicka M, Shreeve T, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 29–42Google Scholar
  20. Küer A, Fartmann T (2005) Prominent shoots are preferred: microhabitat preferences of Maculinea alcon (Denis & Schiffermüller, 1775) in northern Germany (Lycaenidae). Nota lepidopterologica 27:309–319Google Scholar
  21. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606CrossRefGoogle Scholar
  22. Munguira M, García-Barros E, Cano JM (2009) Butterfly herbivory and larval ecology. In: Settele J, Shreeve TG, Konvicka M, van Dyck H (eds) Ecology of butterflies in Europe. Cambridge University Press, Cambridge, pp 43–54Google Scholar
  23. Nieminen M, Singer M, Fortelius W, Schöps K, Hanski I (2001) Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. Am Nat 157:237–244PubMedCrossRefGoogle Scholar
  24. Ohsaki N, Sato Y (1994) Food plant choice of Pieris butterflies as a trade-off between parasitoid avoidance and quality of plants. Ecology 75:59–68CrossRefGoogle Scholar
  25. Piessens K, Adriaens D, Jacquemyn H, Honnay O (2009) Synergistic effects of an extreme weather event and habitat fragmentation on a specialised insect herbivore. Oecologia 159:117–126PubMedCrossRefGoogle Scholar
  26. Poniatowski D, Fartmann T (2008) The classification of insect communities: lessons from Orthoptera assemblages of semi-dry calcareous grasslands in central Germany. Eur J Entomol 105:659–671Google Scholar
  27. Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Conserv 14:637–645. doi: 10.1007/s10841-010-9293-3 CrossRefGoogle Scholar
  28. Porter K (1992) Eggs and egg-laying. In: Dennis RLH (ed) The ecology of butterflies in Britain. Oxford University Press, Oxford, pp 46–72Google Scholar
  29. Reinhardt R, Bolz R (eds) (in press) Rote Liste der Tagfalter (Rhopalocera) (Lepidoptera: Papilionoidea et Hesperioidea). Natursch Biol Vielfalt 70Google Scholar
  30. Roy DB, Thomas JA (2003) Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia 134:439–444PubMedGoogle Scholar
  31. Sato Y, Yano S, Takabayashi J, Ohsaki N (1999) Pieris rapae (Lepidoptera: Pieridae) females avoid oviposition on Rorippa indica plants infested by conspecific larvae. Appl Entomol Zool 34:333–337Google Scholar
  32. Shreeve TG (1986) Egg-laying by the speckled wood butterfly Pararge aegeria: the role of female behaviour, host plant abundance and temperature. Ecol Entomol 11:229–236CrossRefGoogle Scholar
  33. Slater M (2007) Creation of a drystone wall to create egg-laying habitat for Grizzled Skipper Pyrgus malvae at Ryton Wood Meadows Butterfly Conservation Reserve, Warwickshire, England. Conserv Evid 4:35–40Google Scholar
  34. Stoutjesdijk P, Barkman JJ (1992) Microclimate, vegetation and fauna. Opulus Press, UppsalaGoogle Scholar
  35. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3 900051-07-0, URL
  36. Thomas JA (1991) Rare species conservation: case studies of European butterflies. In: Spellerberg IF, Goldsmith FB, Morris MG (eds) The scientific management of temperate communities for conservation. Blackwell Scientific, Oxford, pp 149–197Google Scholar
  37. Thomas JA (2005) Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos T Roy Soc B 360:339–357CrossRefGoogle Scholar
  38. Thomas JA, Clarke RT (2004) Extinction rates and butterflies. Science 305:1563–1564CrossRefGoogle Scholar
  39. Thomas JA, Elmes GW (2001) Food-plant niche selection rather than the presence of ant nests explains oviposition patterns in the myrmecophilous butterfly genus Maculinea. P Roy Soc Lond B Biol 268:471–477CrossRefGoogle Scholar
  40. Thomas JA, Simcox DJ, Wardlaw JC, Elmes GW, Hochberg ME, Clarke RT (1998) Effects of latitude, altitude and climate on the habitat and conservation of the endangered butterfly Maculinea arion and its Myrmica ant hosts. J Insect Conserv 2:39–46CrossRefGoogle Scholar
  41. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. P Roy Soc Lond B Biol 268:1791–1796CrossRefGoogle Scholar
  42. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:1879–1881PubMedCrossRefGoogle Scholar
  43. Tonne F (1954) Besser bauen mit Besonnungs- und Tageslichtplanung. Hofmann, SchondorfGoogle Scholar
  44. van Swaay CAM, Warren MS (1999) Red data book of European butterflies (Rhopalocera). Nat Environ 99:1–260Google Scholar
  45. Wagner W (2006) Die Gattung Pyrgus in Mitteleuropa und ihre Ökologie—Larvalhabitate, Nährpflanzen und Entwicklungszyklen. In: Fartmann T, Hermann G (eds) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa. Abh Westf Mus Naturk 68:83–122Google Scholar
  46. Warren MS, Thomas JA (1992) Butterfly responses to coppicing. In: Buckley GP (ed) Ecology and management of coppice woodlands. Chapman & Hall, London, pp 249–270CrossRefGoogle Scholar
  47. Watt WB, Boggs CL (2003) Synthesis: butterflies as model systems in ecology and evolution—present and future. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies—ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 603–613Google Scholar
  48. Weiss SB, Murphy DD, White RR (1988) Sun, slope, and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69:1486–1496CrossRefGoogle Scholar
  49. Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 63:23–29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Benjamin Krämer
    • 1
  • Immo Kämpf
    • 1
  • Jan Enderle
    • 1
  • Dominik Poniatowski
    • 1
  • Thomas Fartmann
    • 1
  1. 1.Department of Community Ecology, Institute of Landscape EcologyUniversity of MünsterMünsterGermany

Personalised recommendations